skip to main content


Title: Occupancy models reveal regional differences in detectability and improve relative abundance estimations in fossil pollen assemblages.
The late Quaternary fossil record provides crucial data that demonstrate how organisms respond to climate change. These records have been used to great effect, demonstrating that no-analog communities frequently occur during periods of no-analog climate, and that taxa demonstrate individualistic responses to change. However, our efforts to reconstruct biotic responses to environmental change are frequently hampered by inconsistent sampling and differential preservation of fossil taxa. We leveraged occupancy modeling methods and the fossil pollen record across eastern North America to identify circumstances under which occupancy modeling improves our ability to estimate relative abundance in four pollen taxa (Cornus, Fagus, Picea, and Pinus) through time (15 kya to present) and to identify localities where data are unreliable reflections of the local community. We found that integrating observed pollen abundance and detectability improves model performance. Low genus richness and large basin area were consistently important determinants of low detection. Our occupancy models were most informative for taxa with high enough variation in observed pollen abundance for models to be adequately calibrated. We combined occupancy model estimates of pollen abundance and detectability with a Getis-Ord statistical approach to identify spatial clusters of high or low detectability, identifying regions where a taxon’s pollen is more (or less) reliable. This work will advance the integration of ecological and paleontological sciences by allowing us to better identify whether a pollen taxon is truly absent from a fossil site or if it has simply gone undetected, allowing us to produce more robust paleoecological models. This approach will bolster our ability to identify the responses of plant communities to past climatic and anthropogenic change so that we can improve our predictions of future responses.  more » « less
Award ID(s):
1945013 1655898
NSF-PAR ID:
10212296
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Quaternary science reviews
Volume:
253
ISSN:
0277-3791
Page Range / eLocation ID:
106747
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    To investigate cerrado responses to glacial–interglacial climate change and the potential for connective rain forest corridors between the Atlantic Coastal Forest and Amazonian rain forest.

    Location

    The crater lake of Serra Negra (18 °S, 46 °W) in Minas Gerais, Brazil.

    Taxon

    117 fossil pollen types, 22 non‐pollen palynomorphs were documented.

    Methods

    We recovered 7.82 m of sediment from the lake, and analysed fossil pollen at 62 depth intervals throughout the core. We derived a chronology based on radiocarbon dating with simple rate extrapolation to the base of the core.

    Results

    The c. 90,000‐year fossil record showed a trend towards cooler climates at the Last Glacial Maximum (LGM), but interstadial warming coupled with reduced evaporative stress allowed the expansion of woodlands under cool, moist conditions. Cool‐adapted trees were most abundant between c. 67,000 and 48,000 years ago. A cool cerrado‐like environment marked full glacial conditions between c. 48,000 and 34,000 years ago. The peak of the LGM between c. 34,000 and 17,000 years ago is inferred to have been dry as no sediment accumulated in the system.

    Main conclusions

    Expanded ranges of cold‐tolerant forest taxa led to establishment of a series of assemblages without modern analogue. A system characteristic of modern cerrado was rare in the history of this site. Multiple forest expansions were observed, each differing in composition. The periods of forest abundance at Serra Negra were not temporally aligned with forest expansion in the Atlantic Coastal Forest, and did not provide a continuous corridor of similar forest that connected the cerrado to the Atlantic Coastal Forest.

     
    more » « less
  2. 1. Predicting how ecological interactions will respond to global change is a major challenge. Plants and their associated insect herbivores compose much of macroscopic diversity, yet how their interactions have been altered by recent environmental change remains underexplored. 2. To address this gap, we quantified herbivory on herbarium specimens of four plant species with records extending back 112 years. Our study focused on the northeastern US, where temperatures have increased rapidly over the last few decades. This region also represents a range of urban development, a form of global change that has shown variable effects on herbivores in the past studies. 3. Herbarium specimens collected in the early 2000s were 23% more likely to be damaged by herbivores than those collected in the early 1900s. Herbivory was greater following warmer winters and at low latitudes, suggesting that climate warming may drive increasing insect damage over time. In contrast, human population densities were negatively associated with herbivore damage. 4. To explore whether changes in insect occurrence or abundance might explain shifts in herbivory, we used insect observational records to build climate occupancy models for lepidopteran herbivores (butterflies and moths) of our focal plant species. 5. These models show that higher winter temperatures were associated with higher probability of insect herbivore presence, while urbanization was associated with reduced probability of herbivore presence, supporting a link between insect herbivore occurrence and herbivory mediated through environment. 6. Synthesis. Using a temporal record of plant herbivory that spans over a century, we show that both temperature and urbanization influence insect damage to plants, but in very different ways. Our results indicate that damage to plants by insect herbivores will likely continue to increase through time in the northeastern US as global temperatures rise, but that urbanization may disrupt local effects of winter warming on herbivory by excluding certain herbivores. These changes may scale to shape ecosystem processes that are driven by herbivory, including plant productivity. 
    more » « less
  3. Northern-latitude tundra soils harbor substantial carbon (C) stocks that are highly susceptible to microbial degradation with rising global temperatures. Understanding the magnitude and direction (e.g., C release or sequestration) of the microbial responses to warming is necessary to accurately model climate change. In this study, Alaskan tundra soils were subjected to experimental in situ warming by ∼1.1 °C above ambient temperature, and the microbial communities were evaluated using metagenomics after 4.5 years, at 2 depths: 15 to 25 cm (active layer at outset of the experiment) and 45 to 55 cm (transition zone at the permafrost/active layer boundary at the outset of the experiment). In contrast to small or insignificant shifts after 1.5 years of warming, 4.5 years of warming resulted in significant changes to the abundances of functional traits and the corresponding taxa relative to control plots (no warming), and microbial shifts differed qualitatively between the two soil depths. At 15 to 25 cm, increased abundances of carbohydrate utilization genes were observed that correlated with (increased) measured ecosystem carbon respiration. At the 45- to 55-cm layer, increased methanogenesis potential was observed, which corresponded with a 3-fold increase in abundance of a single archaeal clade of the Methanosarcinales order, increased annual thaw duration (45.3 vs. 79.3 days), and increased CH 4 emissions. Collectively, these data demonstrate that the microbial responses to warming in tundra soil are rapid and markedly different between the 2 critical soil layers evaluated, and identify potential biomarkers for the corresponding microbial processes that could be important in modeling. 
    more » « less
  4. BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial N export to aquatic systems. However, a comprehensive synthesis of N availability metrics, outside of experimental settings and capable of revealing large-scale trends, has not yet been carried out. ADVANCES A growing body of observations confirms that N availability is declining in many nonagricultural ecosystems worldwide. Studies have demonstrated declining wood δ 15 N in forests across the continental US, declining foliar [N] in European forests, declining foliar [N] and δ 15 N in North American grasslands, and declining [N] in pollen from the US and southern Canada. This evidence is consistent with observed global-scale declines in foliar δ 15 N and [N] since 1980. Long-term monitoring of soil-based N availability indicators in unmanipulated systems is rare. However, forest studies in the northeast US have demonstrated decades-long decreases in soil N cycling and N exports to air and water, even in the face of elevated atmospheric N deposition. Collectively, these studies suggest a sustained decline in N availability across a range of terrestrial ecosystems, dating at least as far back as the early 20th century. Elevated atmospheric CO 2 levels are likely a main driver of declines in N availability. Terrestrial plants are now uniformly exposed to ~50% more of this essential resource than they were just 150 years ago, and experimentally exposing plants to elevated CO 2 often reduces foliar [N] as well as plant-available soil N. In addition, globally-rising temperatures may raise soil N supply in some systems but may also increase N losses and lead to lower foliar [N]. Changes in other ecosystem drivers—such as local climate patterns, N deposition rates, and disturbance regimes—individually affect smaller areas but may have important cumulative effects on global N availability. OUTLOOK Given the importance of N to ecosystem functioning, a decline in available N is likely to have far-reaching consequences. Reduced N availability likely constrains the response of plants to elevated CO 2 and the ability of ecosystems to sequester carbon. Because herbivore growth and reproduction scale with protein intake, declining foliar [N] may be contributing to widely reported declines in insect populations and may be negatively affecting the growth of grazing livestock and herbivorous wild mammals. Spatial and temporal patterns in N availability are not yet fully understood, particularly outside of Europe and North America. Developments in remote sensing, accompanied by additional historical reconstructions of N availability from tree rings, herbarium specimens, and sediments, will show how N availability trajectories vary among ecosystems. Such assessment and monitoring efforts need to be complemented by further experimental and theoretical investigations into the causes of declining N availability, its implications for global carbon sequestration, and how its effects propagate through food webs. Responses will need to involve reducing N demand via lowering atmospheric CO 2 concentrations, and/or increasing N supply. Successfully mitigating and adapting to declining N availability will require a broader understanding that this phenomenon is occurring alongside the more widely recognized issue of anthropogenic eutrophication. Intercalibration of isotopic records from leaves, tree rings, and lake sediments suggests that N availability in many terrestrial ecosystems has steadily declined since the beginning of the industrial era. Reductions in N availability may affect many aspects of ecosystem functioning, including carbon sequestration and herbivore nutrition. Shaded areas indicate 80% prediction intervals; marker size is proportional to the number of measurements in each annual mean. Isotope data: (tree ring) K. K. McLauchlan et al. , Sci. Rep. 7 , 7856 (2017); (lake sediment) G. W. Holtgrieve et al. , Science 334 , 1545–1548 (2011); (foliar) J. M. Craine et al. , Nat. Ecol. Evol. 2 , 1735–1744 (2018) 
    more » « less
  5. null (Ed.)
    The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic Ice Sheet outside the Antarctic Peninsula, including changes caused by substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct record of glacial history offshore from a drainage basin that receives ice exclusively from the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, warm Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing melting of the underside of the WAIS in most places. Reconstructions of past CDW intrusions can assess the ties between warm water upwelling and large-scale changes in past grounding-line positions. Carrying out these reconstructions offshore from the drainage basin that currently has the most substantial negative mass balance of ice anywhere in Antarctica is thus of prime interest to future predictions. The scientific objectives for this expedition are built on hypotheses about WAIS dynamics and related paleoenvironmental and paleoclimatic conditions. The main objectives are 1. To test the hypothesis that WAIS collapses occurred during the Neogene and Quaternary and, if so, when and under which environmental conditions; 2. To obtain ice-proximal records of ice sheet dynamics in the Amundsen Sea that correlate with global records of ice-volume changes and proxy records for atmospheric and ocean temperatures; 3. To study the stability of a marine-based WAIS margin and how warm deep-water incursions control its position on the shelf; 4. To find evidence for earliest major grounded WAIS advances onto the middle and outer shelf; 5. To test the hypothesis that the first major WAIS growth was related to the uplift of the Marie Byrd Land dome. International Ocean Discovery Program (IODP) Expedition 379 completed two very successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located on a large sediment drift, now called Resolution Drift, and penetrated to 794 m with 90% recovery. We collected almost-continuous cores from the Pleistocene through the Pliocene and into the late Miocene. At Site U1533, we drilled 383 m (70% recovery) into the more condensed sequence at the lower flank of the same sediment drift. The cores of both sites contain unique records that will enable study of the cyclicity of ice sheet advance and retreat processes as well as bottom-water circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an excellent paleomagnetic record for high-resolution climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin. Despite the drilling success at these sites, the overall expedition experienced three unexpected difficulties that affected many of the scientific objectives: 1. The extensive sea ice on the continental shelf prevented us from drilling any of the proposed shelf sites. 2. The drill sites on the continental rise were in the path of numerous icebergs of various sizes that frequently forced us to pause drilling or leave the hole entirely as they approached the ship. The overall downtime caused by approaching icebergs was 50% of our time spent on site. 3. An unfortunate injury to a member of the ship's crew cut the expedition short by one week. Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to precisely indicate the position of ice or retreat of the ice sheet on the shelf. However, these sediments contained in the cores offer a range of clues about past WAIS extent and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent relatively warmer periods variably characterized by higher microfossil abundance, greater bioturbation, and higher counts of IRD alternating with colder periods characterized by dominantly gray laminated terrigenous muds. Initial comparison of these cycles to published records from the region suggests that the units interpreted as records of warmer time intervals in the core tie to interglacial periods and the units interpreted as deposits of colder periods tie to glacial periods. The cores from the two drill sites recovered sediments of purely terrigenous origin intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533, which is located near a deep-sea channel originating from the continental slope, contains graded sands and gravel transported downslope from the shelf to the abyssal plain. The channel is likely the path of such sediments transported downslope by turbidity currents or other sediment-gravity flows. The association of lithologic facies at both sites predominantly reflects the interplay of downslope and contouritic sediment supply with occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our records from the continental rise reveal the timing of glacial advances across the shelf and thus the existence of a continent-wide ice sheet in West Antarctica at least during longer time periods since the late Miocene. Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic origin transported either by downslope processes or by ice rafting. If detailed provenance studies confirm our preliminary assessment that the origin of these samples is from the plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially reveal timing and rates of denudation and erosion linked to crustal uplift. The chronostratigraphy of both sites enables the generation of a seismic sequence stratigraphy not only for the Amundsen Sea rise but also for the western Amundsen Sea along the Marie Byrd Land margin through a connecting network of seismic lines. 
    more » « less