skip to main content


Title: Occupancy models reveal regional differences in detectability and improve relative abundance estimations in fossil pollen assemblages.
The late Quaternary fossil record provides crucial data that demonstrate how organisms respond to climate change. These records have been used to great effect, demonstrating that no-analog communities frequently occur during periods of no-analog climate, and that taxa demonstrate individualistic responses to change. However, our efforts to reconstruct biotic responses to environmental change are frequently hampered by inconsistent sampling and differential preservation of fossil taxa. We leveraged occupancy modeling methods and the fossil pollen record across eastern North America to identify circumstances under which occupancy modeling improves our ability to estimate relative abundance in four pollen taxa (Cornus, Fagus, Picea, and Pinus) through time (15 kya to present) and to identify localities where data are unreliable reflections of the local community. We found that integrating observed pollen abundance and detectability improves model performance. Low genus richness and large basin area were consistently important determinants of low detection. Our occupancy models were most informative for taxa with high enough variation in observed pollen abundance for models to be adequately calibrated. We combined occupancy model estimates of pollen abundance and detectability with a Getis-Ord statistical approach to identify spatial clusters of high or low detectability, identifying regions where a taxon’s pollen is more (or less) reliable. This work will advance the integration of ecological and paleontological sciences by allowing us to better identify whether a pollen taxon is truly absent from a fossil site or if it has simply gone undetected, allowing us to produce more robust paleoecological models. This approach will bolster our ability to identify the responses of plant communities to past climatic and anthropogenic change so that we can improve our predictions of future responses.  more » « less
Award ID(s):
1945013 1655898
NSF-PAR ID:
10212296
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Quaternary science reviews
Volume:
253
ISSN:
0277-3791
Page Range / eLocation ID:
106747
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ameliorating the impacts of climate change on communities requires understanding the mechanisms of change and applying them to predict future responses. One way to prioritize efforts is to identify biotic multipliers, which are species that are sensitive to climate change and disproportionately alter communities. We first evaluate the mechanisms underlying the occupancy dynamics of marbled salamanders, a key predator in temporary ponds in the eastern United States We use long‐term data to evaluate four mechanistic hypotheses proposed to explain occupancy patterns, including autumn flooding, overwintering predation, freezing, and winterkill from oxygen depletion. Results suggest that winterkill and fall flooding best explain marbled salamander occupancy patterns. A field introduction experiment supports the importance of winterkill via hypoxia rather than freezing in determining overwinter survival and rejects dispersal limitation as a mechanism preventing establishment. We build climate‐based correlative models that describe salamander occupancy across ponds and years at two latitudinally divergent sites, a southern and middle site, with and without field‐collected habitat characteristics. Correlative models with climate and habitat variation described occupancy patterns better than climate‐only models for each site, but poorly predicted occupancy patterns at the site not used for model development. We next built hybrid mechanistic metapopulation occupancy models that incorporated flooding and winterkill mechanisms. Although hybrid models did not describe observed site‐specific occupancy dynamics better than correlative models, they better predicted the other site's dynamics, revealing a performance trade‐off between model types. Under future climate scenarios, models predict an increased occupancy of marbled salamanders, especially at the middle site, and expansion at a northern site beyond the northern range boundary. Evidence for the climate sensitivity of marbled salamanders combined with their disproportionate ecological impacts suggests that they might act as biotic multipliers of climate change in temporary ponds. More generally, we predict that top aquatic vertebrate predators will expand into temperate‐boreal lakes as climate change reduces winterkill worldwide. Predaceous species with life histories sensitive to winter temperatures provide good candidates for identifying additional biotic multipliers. Building models that include biological mechanisms for key species such as biotic multipliers could better predict broad changes in communities and design effective conservation actions.

     
    more » « less
  2. Abstract Aim

    Abundance–occupancy relationships posit that more locally abundant species occupy more sites than less abundant species. Although widely supported, the occurrence and detection of abundance–occupancy relationships is sensitive to sampling and detection processes. Data from large‐scale standardized sampling efforts are key to address abundance–occupancy relationships. We aimed to use such a dataset to evaluate the occurrence of abundance–occupancy relationships across different spatial grains and over time for aquatic and terrestrial taxa.

    Location

    USA.

    Time period

    2014–2019.

    Major taxa studied

    Birds, mammals, beetles, ticks, fishes, macroinvertebrates and zooplankton.

    Methods

    Species abundance and occupancy data were obtained from the National Ecological Observatory Network (NEON). Species mean abundance and occupancy (fraction of sampled locations that were occupied) were estimated for three different spatial grains (i.e., plot, site and domain) for all years sampled. Linear models were used to explore the consistency of interspecific abundance–occupancy relationships. The slope coefficients of these models were related to temporal and spatial variables and to species richness while controlling for taxa in a linear mixed‐effects model (LMM) framework.

    Results

    We found evidence for positive abundance–occupancy relationships across the three spatial grains and over time for all taxa we studied. However, our linear models had low explanatory power, suggesting that relationships, although general, were weak. Abundance–occupancy relationships were slightly stronger at the smallest spatial grain than at the largest spatial grain, but showed no detectable change over time for any taxa. Finally, species richness was not associated with the strength of these relationships.

    Main conclusions

    Together, our results suggest that positive interspecific abundance–occupancy relationships are fairly general but are not capable of explaining substantial variation in spatial patterns of abundance, and that other factors, such as species traits and niche, are also likely to influence these relationships.

     
    more » « less
  3. Abstract

    Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest‐understory plant species over the last half‐century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance‐weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species’ shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species’ traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change.

     
    more » « less
  4. Abstract Aim

    To investigate cerrado responses to glacial–interglacial climate change and the potential for connective rain forest corridors between the Atlantic Coastal Forest and Amazonian rain forest.

    Location

    The crater lake of Serra Negra (18 °S, 46 °W) in Minas Gerais, Brazil.

    Taxon

    117 fossil pollen types, 22 non‐pollen palynomorphs were documented.

    Methods

    We recovered 7.82 m of sediment from the lake, and analysed fossil pollen at 62 depth intervals throughout the core. We derived a chronology based on radiocarbon dating with simple rate extrapolation to the base of the core.

    Results

    The c. 90,000‐year fossil record showed a trend towards cooler climates at the Last Glacial Maximum (LGM), but interstadial warming coupled with reduced evaporative stress allowed the expansion of woodlands under cool, moist conditions. Cool‐adapted trees were most abundant between c. 67,000 and 48,000 years ago. A cool cerrado‐like environment marked full glacial conditions between c. 48,000 and 34,000 years ago. The peak of the LGM between c. 34,000 and 17,000 years ago is inferred to have been dry as no sediment accumulated in the system.

    Main conclusions

    Expanded ranges of cold‐tolerant forest taxa led to establishment of a series of assemblages without modern analogue. A system characteristic of modern cerrado was rare in the history of this site. Multiple forest expansions were observed, each differing in composition. The periods of forest abundance at Serra Negra were not temporally aligned with forest expansion in the Atlantic Coastal Forest, and did not provide a continuous corridor of similar forest that connected the cerrado to the Atlantic Coastal Forest.

     
    more » « less
  5. null (Ed.)
    Benthic animals profoundly influence the cycling and storage of carbon and other elements in marine systems, particularly in coastal sediments. Recent climate change has altered the distribution and abundance of many seafloor taxa and modified the vertical exchange of materials between ocean and sediment layers. Here, we examine how climate change could alter animal-mediated biogeochemical cycling in ocean sediments. The fossil record shows repeated major responses from the benthos during mass extinctions and global carbon perturbations, including reduced diversity, dominance of simple trace fossils, decreased burrow size and bioturbation intensity, and nonrandom extinction of trophic groups. The broad dispersal capacity of many extant benthic species facilitates poleward shifts corresponding to their environmental niche as overlying water warms. Evidence suggests that locally persistent populations will likely respond to environmental shifts through either failure to respond or genetic adaptation rather than via phenotypic plasticity. Regional and global ocean models insufficiently integrate changes in benthic biological activity and their feedbacks on sedimentary biogeochemical processes. The emergence of bioturbation, ventilation, and seafloor-habitat maps and progress in our mechanistic understanding of organism–sediment interactions enable incorporation of potential effects of climate change on benthic macrofaunal mediation of elemental cycles into regional and global ocean biogeochemical models. 
    more » « less