skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Terahertz characterization of two-dimensional low-conductive layers enabled by metal gratings
Abstract While terahertz spectroscopy can provide valuable information regarding the charge transport properties in semiconductors, its application for the characterization of low-conductive two-dimensional layers, i.e., σs <  < 1 mS, remains elusive. This is primarily due to the low sensitivity of direct transmission measurements to such small sheet conductivity levels. In this work, we discuss harnessing the extraordinary optical transmission through gratings consisting of metallic stripes to characterize such low-conductive two-dimensional layers. We analyze the geometric tradeoffs in these structures and provide physical insights, ultimately leading to general design guidelines for experiments enabling non-contact, non-destructive, highly sensitive characterization of such layers.  more » « less
Award ID(s):
1810096
PAR ID:
10212445
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A polymer-based, one-dimensional photonic crystal exhibiting anisotropic responses was demonstrated in the terahertz frequency range. The photonic crystal was composed of alternating compact and low-density polymethacrylate layers. The low-density layers consisted of sub-wavelength sized columns, which were slanted 45° with respect to the substrate surface normal to achieve form-birefringence. Normal incidence polarized terahertz transmission measurements were carried out for characterization of the fabricated photonic crystals in the range from 82 to 125 GHz. The experimental data revealed a 2 GHz shift in the center frequency of the photonic bandgap as a function of in-plane orientation, well demonstrating the anisotropic behavior of the fabricated crystal. The transmission data were analyzed using stratified optical layer model calculations. A good agreement was found between the relevant model parameters and the corresponding design parameters. 
    more » « less
  2. Abstract Currently, there is considerable interest in developing advanced rechargeable batteries that boast efficient distribution of electricity and economic feasibility for use in large-scale energy storage systems. Rechargeable aqueous zinc batteries are promising alternatives to lithium-ion batteries in terms of rate performance, cost, and safety. In this investigation, we employ Cu3(HHTP)2, a two-dimensional (2D) conductive metal-organic framework (MOF) with large one-dimensional channels, as a zinc battery cathode. Owing to its unique structure, hydrated Zn2+ions which are inserted directly into the host structure, Cu3(HHTP)2, allow high diffusion rate and low interfacial resistance which enable the Cu3(HHTP)2cathode to follow the intercalation pseudocapacitance mechanism. Cu3(HHTP)2exhibits a high reversible capacity of 228 mAh g−1at 50 mA g−1. At a high current density of 4000 mA g−1(~18 C), 75.0% of the initial capacity is maintained after 500 cycles. These results provide key insights into high-performance, 2D conductive MOF designs for battery electrodes. 
    more » « less
  3. Soft, stretchable sensors, such as artificial skins or tactile sensors, are attractive for numerous soft robotic applications due to the low material compliance. Conductive polymers are a necessary component of many soft sensors, and this work presents the electromechanical characterization of 3D-printable conductive polymer composites. Dog-bone shaped samples were 3D printed using a digital light processing (DLP)-based 3D printer for characterization. The 3D printable resin consists of monomer, crosslinker, conductive nano-filler, and a photo-initiator. The characterization was performed in two tracks. First, the effect of two different crosslinkers was investigated with different compositions and second, the effect of concentration of conductive nano-fillers was explored. Crosslinkers were chosen by referring to previous studies, and carbon nanotubes (CNTs) were utilized as conductive nano-fillers. The samples were 3D printed and characterized using an electromechanical test setup. To demonstrate utility for 3D printed soft robotics, a capacitance-based joystick sensor composed of both conductive and non-conductive resins was 3D printed. 
    more » « less
  4. Abstract Lattice reconstruction and corresponding strain accumulation plays a key role in defining the electronic structure of two-dimensional moiré superlattices, including those of transition metal dichalcogenides (TMDs). Imaging of TMD moirés has so far provided a qualitative understanding of this relaxation process in terms of interlayer stacking energy, while models of the underlying deformation mechanisms have relied on simulations. Here, we use interferometric four-dimensional scanning transmission electron microscopy to quantitatively map the mechanical deformations through which reconstruction occurs in small-angle twisted bilayer MoS2and WSe2/MoS2heterobilayers. We provide direct evidence that local rotations govern relaxation for twisted homobilayers, while local dilations are prominent in heterobilayers possessing a sufficiently large lattice mismatch. Encapsulation of the moiré layers in hBN further localizes and enhances these in-plane reconstruction pathways by suppressing out-of-plane corrugation. We also find that extrinsic uniaxial heterostrain, which introduces a lattice constant difference in twisted homobilayers, leads to accumulation and redistribution of reconstruction strain, demonstrating another route to modify the moiré potential. 
    more » « less
  5. Abstract Ultrathin (sub-2 nm) Al2O3/MgO memristors were recently developed using anin vacuoatomic layer deposition (ALD) process that minimizes unintended defects and prevents undesirable leakage current. These memristors provide a unique platform that allows oxygen vacancies (VO) to be inserted into the memristor with atomic precision and study how this affects the formation and rupture of conductive filaments (CFs) during memristive switching. Herein, we present a systematic study on three sets of ultrathin Al2O3/MgO memristors with VO-doping via modular MgO atomic layer insertion into an otherwise pristine insulating Al2O3atomic layer stack (ALS) using anin vacuoALD. At a fixed memristor thickness of 17 Al2O3/MgO atomic layers (∼1.9 nm), the properties of the memristors were found to be affected by the number and stacking pattern of the MgO atomic layers in the Al2O3/MgO ALS. Importantly, the trend of reduced low-state resistance and the increasing appearance of multi-step switches with an increasing number of MgO atomic layers suggests a direct correlation between the dimension and dynamic evolution of the conducting filaments and the VOconcentration and distribution. Understanding such a correlation is critical to an atomic-scale control of the switching behavior of ultrathin memristors. 
    more » « less