skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electromechanical Characterization of 3D Printable Conductive Elastomer for Soft Robotics
Soft, stretchable sensors, such as artificial skins or tactile sensors, are attractive for numerous soft robotic applications due to the low material compliance. Conductive polymers are a necessary component of many soft sensors, and this work presents the electromechanical characterization of 3D-printable conductive polymer composites. Dog-bone shaped samples were 3D printed using a digital light processing (DLP)-based 3D printer for characterization. The 3D printable resin consists of monomer, crosslinker, conductive nano-filler, and a photo-initiator. The characterization was performed in two tracks. First, the effect of two different crosslinkers was investigated with different compositions and second, the effect of concentration of conductive nano-fillers was explored. Crosslinkers were chosen by referring to previous studies, and carbon nanotubes (CNTs) were utilized as conductive nano-fillers. The samples were 3D printed and characterized using an electromechanical test setup. To demonstrate utility for 3D printed soft robotics, a capacitance-based joystick sensor composed of both conductive and non-conductive resins was 3D printed.  more » « less
Award ID(s):
1921251 1734981
PAR ID:
10192342
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Soft Robotics (RoboSoft)
Page Range / eLocation ID:
318 to 324
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Covalent adaptable network (CAN) polymers doped with conductive nanoparticles are an ideal candidate to create reshapeable, rehealable, and fully recyclable electronics. On the other hand, 3D printing as a deterministic manufacturing method has a significant potential to fabricate electronics with low cost and high design freedom. In this paper, we incorporate a conductive composite consisting of polyimine CAN and multi-wall carbon nanotubes into direct-ink-writing 3D printing to create polymeric sensors with outstanding reshaping, repairing, and recycling capabilities. The developed printable ink exhibits good printability, conductivity, and recyclability. The conductivity of printed polyimine composites is investigated at different temperatures and deformation strain levels. Their shape-reforming and Joule heating-induced interfacial welding effects are demonstrated and characterized. Finally, a temperature sensor is 3D printed with defined patterns of conductive pathways, which can be easily mounted onto 3D surfaces, repaired after damage, and recycled using solvents. The sensing capability of printed sensors is maintained after the repairing and recycling. Overall, the 3D printed reshapeable, rehealable, and recyclable sensors possess complex geometry and extend service life, which assist in the development of polymer-based electronics toward broad and sustainable applications. 
    more » « less
  2. Abstract Boron nitride nanotubes (BNNTs) are the perfect candidate for nanofillers in high-temperature multifunctional ceramics due to their high thermal stability, oxidation resistance, good mechanical properties, high thermal conductivity, and radiation shielding. In this paper, 3D printed ceramic nanocomposite with 0.1 wt% of BNNT was prepared by fusing it at high temperatures. Samples were built with three different print directions to study the effect of print layers on mechanical performance along with BNNT addition. Dynamic mechanical analysis is performed to study the length effect of nanoscale reinforcements on the mechanical properties of the printed ceramic composites reporting significant improvements up to 55% in bending strength and 72% in bending modulus with just 0.1 wt% BNNT addition. A 63% thermal diffusivity improvement of ceramic by adding BNNTs is observed using laser flash analysis. The bridging and pull-out effect of nanotubes with a longer aspect ratio was observed with high-resolution microscopy. Such composites’ modeling and simulation approaches are crucial for virtual testing and industrial applications. Understanding the effect of nanoscale synthetic fillers for 3D printed high-temperature ceramics can revolutionize future extreme environment structures. 
    more » « less
  3. Soft 3D-printable adhesive elastomers with self-healing capabilities were formulated. These materials were 3D printed into complex structures and used to modify soft robots for shape-selective lifting. 
    more » « less
  4. Three commercially-available conductive filaments were evaluated for 3D printing flexible circuits on paper. While all three filaments were printed successfully, the resulting conductive traces were found to have significantly different impedances when characterized by electrochemical impedance spectroscopy. Using a graphite-doped polylactic acid filament, the flexibility of paper-based conductive traces was evaluated, methods of integrating common electrical and electronic components with the conductive traces were demonstrated, and the resistive heating of the traces was characterized. The ability to 3D print conductive traces on paper using commercially available materials opens many opportunities for rapid prototyping of flexible electronics and for integrating electronic circuits with paper-based microfluidic devices. 
    more » « less
  5. Abstract Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large‐scale, low‐cost electronic devices on a variety of substrates. Printed electronics plays a critical role in facilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial‐based printing technologies, formulation of printable inks, post‐printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologies, formulations of printable inks based on conductive nanomaterials, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods. While this review places emphasis on conductive nanomaterials, the printing techniques and ink formulations can be applied to other materials such as semiconducting and insulating nanomaterials. Moreover, some applications of printed flexible and stretchable electronic devices are reviewed to illustrate their potential. Finally, the future challenges and prospects for printing conductive nanomaterials are discussed. 
    more » « less