skip to main content

Title: Vertical Structure of the Upper–Indian Ocean Thermal Variability
Abstract Multi-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is more » generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies. « less
Authors:
; ; ; ;
Award ID(s):
1658132
Publication Date:
NSF-PAR ID:
10212544
Journal Name:
Journal of Climate
Volume:
33
Issue:
17
Page Range or eLocation-ID:
7233 to 7253
ISSN:
0894-8755
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Observations show that since the 1950s, the Southern Ocean has stored a large amount of anthropogenic heat and has freshened at the surface. These patterns can be attributed to two components of surface forcing: poleward-intensified westerly winds and increased buoyancy flux from freshwater and heat. Here we separate the effects of these two forcing components by using a novel partial-coupling technique. We show that buoyancy forcing dominates the overall response in the temperature and salinity structure of the Southern Ocean. Wind stress change results in changes in subsurface temperature and salinity that are closely related to intensified residual meridional overturning circulation. As an important result, we show that buoyancy and wind forcing result in opposing changes in salinity: the wind-induced surface salinity increase due to upwelling of saltier subsurface water offsets surface freshening due to amplification of the global hydrological cycle. Buoyancy and wind forcing further lead to different vertical structures of Antarctic Circumpolar Current (ACC) transport change; buoyancy forcing causes an ACC transport increase (3.1 ± 1.6 Sv; 1 Sv ≡ 10 6 m 3 s −1 ) by increasing the meridional density gradient across the ACC in the upper 2000 m, while the wind-induced response is moremore »barotropic, with the whole column transport increased by 8.7 ± 2.3 Sv. While previous research focused on the wind effect on ACC intensity, we show that surface horizontal current acceleration within the ACC is dominated by buoyancy forcing. These results shed light on how the Southern Ocean might change under global warming, contributing to more reliable future projections.« less
  2. Abstract The Sea Surface Temperature Anomaly (SSTA) in tropical Atlantic during boreal spring and summer shows two dominant modes: a basin-warming and a meridional dipole mode, respectively. Observational and coupled model simulations indicate that the former induces a Pacific La Niña in the succeeding winter whereas the latter cannot. The basin-warming forcing induces a La Niña through a Kelvin wave response and the associated wind-evaporation-SST-convection (WESC) feedback over the northern Indian Ocean (NIO) and Maritime Continent (MC). Anomalous Kelvin wave easterly interacts with the monsoonal westerly, leading to a warm SSTA and a northwest-southeast oriented heating anomaly in NIO/MC, which further induces easterly and cold SSTA over the equatorial Pacific. In contrast, the dipole forcing has little impact on the Indian and Pacific Oceans due to the offsetting of the Kelvin wave to the asymmetric Atlantic heating. Further observational and modeling studies towards the Tropical North Atlantic (TNA) and Equatorial Atlantic (EA) SSTA modes indicate that the TNA (EA) forcing induces a CP- (EP-) type ENSO. In both cases, the Kelvin wave response and the WESC feedback over the NIO/MC are important in conveying the Atlantic’s impact. The difference lies in distinctive Rossby wave responses – A marked westerly anomalymore »appears in the equatorial eastern Pacific (EEP) for the TNA forcing (due to its westward location) while no significant wind response is observed in EEP for the EA forcing. The westerly anomaly prevents a cooling tendency in EEP through anomalous zonal and vertical advection according to a mixed-layer heat budget analysis.« less
  3. Abstract Cloud radiative feedbacks are disabled via “cloud-locking” in the Community Earth System Model, version 1.2 (CESM1.2), to result in a shift in El Niño–Southern Oscillation (ENSO) periodicity from 2–7 years to decadal time scales. We hypothesize that cloud radiative feedbacks may impact the periodicity in three ways: by 1) modulating heat flux locally into the equatorial Pacific subsurface through negative shortwave cloud feedback on sea surface temperature anomalies (SSTA), 2) damping the persistence of subtropical southeast Pacific SSTA such that the South Pacific meridional mode impacts the duration of ENSO events, or 3) controlling the meridional width of off-equatorial westerly winds, which impacts the periodicity of ENSO by initiating longer Rossby waves. The result of cloud-locking in CESM1.2 contrasts that of another study, which found that cloud-locking in a different global climate model led to decreased ENSO magnitude across all time scales due to a lack of positive longwave feedback on the anomalous Walker circulation. CESM1.2 contains this positive longwave feedback on the anomalous Walker circulation, but either its influence on the surface is decoupled from ocean dynamics or the feedback is only active on interannual time scales. The roles of cloud radiative feedbacks in ENSO in other globalmore »climate models are additionally considered. In particular, it is shown that one cannot predict the role of cloud radiative feedbacks in ENSO through a multimodel diagnostic analysis. Instead, they must be directly altered.« less
  4. Abstract Predictability of seasonal sea ice advance in the Chukchi Sea has been investigated in the context of ocean heat transport from the Bering Strait; however, the underlying physical processes have yet to be fully clarified. Using the Pan-Arctic Ice–Ocean Modeling and Assimilation System (PIOMAS) reanalysis product (1979–2016), we examined seasonal predictability of sea ice advance in early winter (November–December) and its source using canonical correlation analysis. It was found that 2-month leading (September–October) surface heat flux and ocean heat advection is the major predictor for interannual variability of sea ice advance. Surface heat flux is related to the atmospheric cooling process, which has influenced sea ice area in the southeastern Chukchi Sea particularly in the 1980s and 1990s. Anomalous surface heat flux is induced by strong northeasterly winds related to the east Pacific/North Pacific teleconnection pattern. Ocean heat advection, which is related to fluctuation of volume transport in the Bering Strait, leads to decrease in the sea ice area in the northwestern Chukchi Sea. Diagnostic analysis revealed that interannual variability of the Bering Strait volume transport is governed by arrested topographic waves (ATWs) forced by southeasterly wind stress along the shelf of the East Siberian Sea. The contribution ofmore »ocean heat flux to sea ice advance has increased since the 2000s; therefore, it is suggested that the major factor influencing interannual variability of sea ice advance in early winter has shifted from atmospheric cooling to ocean heat advection processes. Significance Statement Predictability of sea ice advance in the marginal Arctic seas in early winter is a crucial issue regarding future projections of the midlatitude winter climate and marine ecosystem. This study examined seasonal predictability of sea ice advance in the Chukchi Sea in early winter using a statistical technique and historical model simulation data. We identified that atmospheric cooling and ocean heat transport are the two main predictors of sea ice advance, and that the impact of the latter has become amplified since the 2000s. Our new finding suggests that the precise information on wind-driven ocean currents and temperatures is crucial for the skillful prediction of interannual variability of sea ice advance under present and future climatic regimes.« less
  5. The southeast Indian Ocean (SEIO) exhibits decadal variability in sea surface temperature (SST) with amplitudes of ~0.2–0.3 K and covaries with the central Pacific ( r = −0.63 with Niño-4 index for 1975–2010). In this study, the generation mechanisms of decadal SST variability are explored using an ocean general circulation model (OGCM), and its impact on atmosphere is evaluated using an atmospheric general circulation model (AGCM). OGCM experiments reveal that Pacific forcing through the Indonesian Throughflow explains <20% of the total SST variability, and the contribution of local wind stress is also small. These wind-forced anomalies mainly occur near the Western Australian coast. The majority of SST variability is attributed to surface heat fluxes. The reduced upward turbulent heat flux ( Q T ; latent plus sensible heat flux), owing to decreased wind speed and anomalous warm, moist air advection, is essential for the growth of warm SST anomalies (SSTAs). The warming causes reduction of low cloud cover that increases surface shortwave radiation (SWR) and further promotes the warming. However, the resultant high SST, along with the increased wind speed in the offshore area, enhances the upward Q T and begins to cool the ocean. Warm SSTAs co-occur with cyclonicmore »low-level wind anomalies in the SEIO and enhanced rainfall over Indonesia and northwest Australia. AGCM experiments suggest that although the tropical Pacific SST has strong effects on the SEIO region through atmospheric teleconnection, the cyclonic winds and increased rainfall are mainly caused by the SEIO warming through local air–sea interactions.« less