skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulated Antarctic sea ice expansion reconciles climate model with observation
Abstract Observations reveal Antarctic sea ice expansion and Southern Ocean surface cooling trends from 1979 to 2014, whereas climate models mostly simulate the opposite. Here I use historical ensemble simulations with multiple climate models to show that sea-ice natural variability enables the models to simulate an Antarctic sea ice expansion during this period under anthropogenic forcings. Along with sea-ice expansion, Southern Ocean surface and subsurface temperatures up to 50oS, as well as lower tropospheric temperatures between 60oS and 80oS, exhibit significant cooling trends, all of which are consistent with observations. Compared to the sea-ice decline scenario, Antarctic sea ice expansion brings tropical precipitation changes closer to observations. Neither the Southern Annular Mode nor the Interdecadal Pacific Oscillation can fully explain the simulated Antarctic sea ice expansion over 1979–2014, while the sea-ice expansion is closely linked to surface meridional winds associated with a zonal wave 3 pattern.  more » « less
Award ID(s):
2123422 2053121 2237743
PAR ID:
10565192
Author(s) / Creator(s):
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Volume:
8
Issue:
1
ISSN:
2397-3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Southern Ocean surface cooling and Antarctic sea ice expansion from 1979 through 2015 have been linked both to changing atmospheric circulation and melting of Antarctica's grounded ice and ice shelves. However, climate models have largely been unable to reproduce this behavior. Here we examine the contribution of observed wind variability and Antarctic meltwater to Southern Ocean sea surface temperature (SST) and Antarctic sea ice. The free‐running, CMIP6‐class GISS‐E2.1‐G climate model can simulate regional cooling and neutral sea ice trends due to internal variability, but they are unlikely. Constraining the model to observed winds and meltwater fluxes from 1990 through 2021 gives SST variability and trends consistent with observations. Meltwater and winds contribute a similar amount to the SST trend, and winds contribute more to the sea ice trend than meltwater. However, while the constrained model captures much of the observed sea ice variability, it only partially captures the post‐2015 sea ice reduction. 
    more » « less
  2. null (Ed.)
    Abstract Antarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends. 
    more » « less
  3. Abstract The Antarctic sea ice area expanded significantly during 1979–2015. This is at odds with state-of-the-art climate models, which typically simulate a receding Antarctic sea ice cover in response to increasing greenhouse forcing. Here, we investigate the hypothesis that this discrepancy between models and observations occurs due to simulation biases in the sea ice drift velocity. As a control we use the Community Earth System Model (CESM) Large Ensemble, which has 40 realizations of past and future climate change that all undergo Antarctic sea ice retreat during recent decades. We modify CESM to replace the simulated sea ice velocity field with a satellite-derived estimate of the observed sea ice motion, and we simulate 3 realizations of recent climate change. We find that the Antarctic sea ice expands in all 3 of these realizations, with the simulated spatial structure of the expansion bearing resemblance to observations. The results suggest that the reason CESM has failed to capture the observed Antarctic sea ice expansion is due to simulation biases in the sea ice drift velocity, implying that an improved representation of sea ice motion is crucial for more accurate sea ice projections. 
    more » « less
  4. Abstract Historical observations of Earth’s climate underpin our knowledge and predictions of climate variability and change. However, the observations are incomplete and uncertain, and existing datasets based on these observations typically do not assimilate observations simultaneously across different components of the climate system, yielding inconsistencies that limit understanding of coupled climate dynamics. Here, we use coupled data assimilation, which synthesizes observational and dynamical constraints across all climate fields simultaneously, to reconstruct globally resolved sea surface temperature (SST), near-surface air temperature (T), sea level pressure (SLP), and sea ice concentration (SIC), over 1850–2023. We use a Kalman filter and forecasts from an efficient emulator, the linear inverse model (LIM), to assimilate observations of SST, landT, marine SLP, and satellite-era SIC. We account for model error by training LIMs on eight CMIP6 models, and we use the LIMs to generate eight independent reanalyses with 200 ensemble members, yielding 1600 total members. Key findings in the tropics include post-1980 trends in the Walker circulation that are consistent with past variability, whereas the tropical SST contrast (the difference between warmer and colder SSTs) shows a distinct strengthening since 1975. El Niño–Southern Oscillation (ENSO) amplitude exhibits substantial low-frequency variability and a local maximum in variance over 1875–1910. In polar regions, we find a muted cooling trend in the Southern Ocean post-1980 and substantial uncertainty. Changes in Antarctic sea ice are relatively small between 1850 and 2000, while Arctic sea ice declines by 0.5 ± 0.1 (1σ) million km2during the 1920s. Significance StatementThe key advance in our reconstruction is that the ocean, atmosphere, and sea ice are dynamically consistent with each other and with observations across all components, thus forming a true climate reanalysis. Existing climate datasets are typically derived separately for each component (e.g., atmosphere, ocean, and sea ice), leading to spurious trends and inconsistencies in coupled climate variability. We use coupled data assimilation to unify observations and coupled dynamics across components. We combine forecasts from climate models with observations from ocean vessels and weather stations to produce monthly state estimates spanning 1850–2023 and a novel quantification of globally resolved uncertainty. This reconstruction provides insights into historical variability and trends while motivating future efforts to reduce uncertainties in the climate record. 
    more » « less
  5. Abstract The expansion of Antarctic sea ice since 1979 in the presence of increasing greenhouse gases remains one of the most puzzling features of current climate change. Some studies have proposed that the formation of the ozone hole, via the Southern Annular Mode, might explain that expansion, and a recent paper highlighted a robust causal link between summertime Southern Annular Mode (SAM) anomalies and sea ice anomalies in the subsequent autumn. Here we show that many models are able to capture this relationship between the SAM and sea ice, but also emphasize that the SAM only explains a small fraction of the year‐to‐year variability. Finally, examining multidecadal trends, in models and in observations, we confirm the findings of several previous studies and conclude that the SAM–and thus the ozone hole–are not the primary drivers of the sea ice expansion around Antarctica in recent decades. 
    more » « less