skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interannual Variability and Trends of Sea Surface Temperature Around Southern South America
The interannual variability and trends of sea surface temperature (SST) around southern South America are studied from 1982 to 2017 using monthly values of the Optimally Interpolation SST version 2 gridded database. Mid-latitude (30°–50°S) regions in the eastern South Pacific and western South Atlantic present moderate to intense warming (~0.4°C decade −1 ), while south of 50°S the region around southern South America presents moderate cooling (~ −0.3°C decade −1 ). Two areas of statistically significant trends of SST anomalies (SSTa) with opposite sign are found on the Patagonian Shelf over the southwest South Atlantic: a warming area delimited between 42 and 45°S (Northern Patagonian Shelf; NPS), and a cooling area between 49 and 52°S (Southern Patagonian Shelf; SPS). Between 1982 and 2017 the warming rate has been 0.15 ± 0.01°C decade −1 representing an increase of 0.52°C at NPS, and the cooling rate has been –0.12 ± 0.01°C decade −1 representing a decrease of 0.42°C at SPS. On both regions, the largest trends are observed during 2008–2017 (0.35 ± 0.02°C decade −1 at NPS and –0.27 ± 0.03°C decade −1 at SPS), while the trends in 1982–2007 are non-significant, indicating the record-length SSTa trends are mostly associated with the variability observed during the past 10 years of the record. The spectra of the records present significant variance at interannual time scales, centered at about 80 months (~6 years). The observed variability of SSTa is studied in connection with atmospheric forcing (zonal and meridional wind components, wind speed, wind stress curl and surface heat fluxes). During 1982–2007, the local meridional wind explains 25–30% of the total variance at NPS and SPS on interannual time scales. During 2008–2017, the SSTa at NPS is significantly anticorrelated with the local zonal wind ( r = –0.85), while at SPS it is significantly anticorrelated with the meridional wind ( r = –0.61). Our results show that a substantial fraction of the interannual variability of SSTa around southern South America can be described by the first three empirical orthogonal function (EOF) modes which explain 28, 16, and 12% of the variance, respectively. The variability of the three EOF principal components time series is associated with the combined variability of El Niño–Southern Oscillation, the Interdecadal Pacific Oscillation and the Southern Annular Mode.  more » « less
Award ID(s):
1645887
PAR ID:
10398936
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Atlantic Niños dominate the equatorial Atlantic variability during boreal summer (June–August). The coupled ocean‐atmosphere processes associated with Atlantic Niños have been extensively documented. However, the role of atmospheric convectively coupled Kelvin waves (CCKWs), which are uncorrelated to those previously identified processes, in triggering Atlantic Niños has been unclear. Here we identify CCKWs using Wheeler‐Kiladis filtering based on 10°S–10°N averaged daily outgoing longwave radiation. CCKWs propagate eastward from South America and induce surface zonal wind anomalies over the equatorial Atlantic Ocean. Strong anomalous CCKWs during spring (March–May) and their associated surface westerly wind anomalies can trigger downwelling oceanic Kelvin waves that change the east–west slope of the thermocline, consequently leading to Atlantic Niño. A causal effect network reveals that interannual sea surface temperature (SST) anomalies in the Atlantic Niño Index area and CCKWs, both in spring, are uncorrelated, but both appear to influence SST anomalies over the Atlantic Niño Index area in summer. The CCKWs are also uncorrelated to other coupled ocean‐atmosphere sources, such as El Niño–Southern Oscillation and Atlantic Meridional Mode. Among a total of 15 Atlantic Niño/Niña events identified for the period of 1980–2017, two‐thirds of the events are linked to CCKWs. In particular, three Atlantic Niña events (1982, 1994, and 2005) are mainly triggered by CCKWs, under unfavorable SST preconditions. Thus, CCKWs in spring, due to atmospheric internal variability, provide another mechanism for triggering Atlantic Niños and probably weaken their predictability. 
    more » « less
  2. Abstract We characterize long‐term trends of sea surface temperature (SST), absolute dynamic topography, and chlorophyll‐a(CHL) in the Patagonian shelf break front (SBF) using 27 years (1993–2019) of satellite data. Warming of the Argentinean shelf waters and the southwestward displacement of the Brazil‐Malvinas Confluence (BMC) impact the northernmost extension of the SBF. Cooling of the Malvinas Current (MC) and the concurrent warming of the adjacent shelf waters lead to a significant increase of SST gradients along the outer shelf. The southwestward displacement of the BMC implies a similar shift of the SBF. An increase in CHL trend appears to be associated with southerly wind anomalies along the shelf break. We estimate a southward shift of the northernmost penetration of the MC of −0.11 ± 0.076°/decade. 
    more » « less
  3. Abstract The 1991–2020 climate normals for sea surface temperature (SST) are computed based on the NOAA Daily Optimum Interpolation SST dataset. This is the first time that high‐resolution SST normals with global coverage can be achieved in the satellite SST era. Normals are one of the fundamental parameters in describing and understanding weather and climate and provide decision‐making information to industry, public, and scientific communities. This product suite includes SST mean, standard deviation, count and extreme parameters at daily, monthly, seasonal and annual time scales on 0.25° spatial grids. The main feature of the SST mean state revealed by the normals is that in the Tropics, the Indo‐Pacific Ocean is dominated by the warm pool (SST ≥ 28°C) while the eastern Pacific is characterized by the cold tongue (SST ≤ 24°C); in the midlatitudes, SSTs are in zonal patterns with high meridional gradients. Daily SST standard deviations are generally small (<1.0°C) except in frontal zones (>1.5°C) mostly associated with ocean currents such as the Gulf Stream, Kuroshio and Equatorial Currents. Compared to the 1982–2011 climatology, the 1991–2020 mean SSTs increased over most global areas but obvious cooling is seen in the Southern Ocean, eastern tropical South Pacific Ocean and North Atlantic warming hole. The Indo‐Pacific warm pool (IPWP) is found to have strengthened in both intensity and coverage since 1982–2011. By a count parameter criterion of ≥300 days annually with SST ≥ 28°C, the IPWP coverage increased 33% from 1982–2011 to 1991–2020. The global mean SST of 1991–2020 is warmer than that of 1982–2011, and the warming rate over 1991–2020 doubles that over 1901–2020. 
    more » « less
  4. null (Ed.)
    Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections. 
    more » « less
  5. null (Ed.)
    Abstract Investigating Pacific Meridional Modes (PMM) without the influence of tropical Pacific variability is technically difficult if based on observations or fully coupled model simulations due to their overlapping spatial structures. To confront this issue, the present study investigates both North (NPMM) and South PMM (SPMM) in terms of their associated atmospheric forcing and response processes based on a mechanically decoupled climate model simulation. In this experiment, the climatological wind stress is prescribed over the tropical Pacific, which effectively removes dynamically coupled tropical Pacific variability (e.g., the El Niño-Southern Oscillation). Interannual NPMM in this experiment is forced not only by the North Pacific Oscillation, but also by a North Pacific tripole (NPT) pattern of atmospheric internal variability, which primarily forces decadal NPMM variability. Interannual and decadal variability of the SPMM is partly forced by the South Pacific Oscillation. In turn, both interannual and decadal NPMM variability can excite atmospheric teleconnections over the Northern Hemisphere extratropics by influencing the meridional displacement of the climatological intertropical convergence zone throughout the whole year. Similarly, both interannual and decadal SPMM variability can also excite atmospheric teleconnections over the Southern Hemisphere extratropics by extending/shrinking the climatological South Pacific convergence zone in all seasons. Our results highlight a new poleward pathway by which both the NPMM and SPMM feed back to the extratropical climate, in addition to the equatorward influence on tropical Pacific variability. 
    more » « less