skip to main content

Title: Interannual Variability and Trends of Sea Surface Temperature Around Southern South America
The interannual variability and trends of sea surface temperature (SST) around southern South America are studied from 1982 to 2017 using monthly values of the Optimally Interpolation SST version 2 gridded database. Mid-latitude (30°–50°S) regions in the eastern South Pacific and western South Atlantic present moderate to intense warming (~0.4°C decade −1 ), while south of 50°S the region around southern South America presents moderate cooling (~ −0.3°C decade −1 ). Two areas of statistically significant trends of SST anomalies (SSTa) with opposite sign are found on the Patagonian Shelf over the southwest South Atlantic: a warming area delimited between 42 and 45°S (Northern Patagonian Shelf; NPS), and a cooling area between 49 and 52°S (Southern Patagonian Shelf; SPS). Between 1982 and 2017 the warming rate has been 0.15 ± 0.01°C decade −1 representing an increase of 0.52°C at NPS, and the cooling rate has been –0.12 ± 0.01°C decade −1 representing a decrease of 0.42°C at SPS. On both regions, the largest trends are observed during 2008–2017 (0.35 ± 0.02°C decade −1 at NPS and –0.27 ± 0.03°C decade −1 at SPS), while the trends in 1982–2007 are non-significant, indicating the record-length SSTa trends are mostly associated with the more » variability observed during the past 10 years of the record. The spectra of the records present significant variance at interannual time scales, centered at about 80 months (~6 years). The observed variability of SSTa is studied in connection with atmospheric forcing (zonal and meridional wind components, wind speed, wind stress curl and surface heat fluxes). During 1982–2007, the local meridional wind explains 25–30% of the total variance at NPS and SPS on interannual time scales. During 2008–2017, the SSTa at NPS is significantly anticorrelated with the local zonal wind ( r = –0.85), while at SPS it is significantly anticorrelated with the meridional wind ( r = –0.61). Our results show that a substantial fraction of the interannual variability of SSTa around southern South America can be described by the first three empirical orthogonal function (EOF) modes which explain 28, 16, and 12% of the variance, respectively. The variability of the three EOF principal components time series is associated with the combined variability of El Niño–Southern Oscillation, the Interdecadal Pacific Oscillation and the Southern Annular Mode. « less
Authors:
; ;
Award ID(s):
1645887
Publication Date:
NSF-PAR ID:
10398936
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Sponsoring Org:
National Science Foundation
More Like this
  1. Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions inmore »1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections.« less
  2. Abstract This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stablemore »in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components.« less
  3. The direct response of the cold-season atmospheric circulation to the Arctic sea ice loss is estimated from observed sea ice concentration (SIC) and an atmospheric reanalysis, assuming that the atmospheric response to the long-term sea ice loss is the same as that to interannual pan-Arctic SIC fluctuations with identical spatial patterns. No large-scale relationship with previous interannual SIC fluctuations is found in October and November, but a negative North Atlantic Oscillation (NAO)/Arctic Oscillation follows the pan-Arctic SIC fluctuations from December to March. The signal is field significant in the stratosphere in December, and in the troposphere and tropopause thereafter. However, multiple regressions indicate that the stratospheric December signal is largely due to concomitant Siberian snow-cover anomalies. On the other hand, the tropospheric January–March NAO signals can be unambiguously attributed to SIC variability, with an Iceland high approaching 45 m at 500 hPa, a 2°C surface air warming in northeastern Canada, and a modulation of blocking activity in the North Atlantic sector. In March, a 1°C northern Europe cooling is also attributed to SIC. An SIC impact on the warm Arctic–cold Eurasia pattern is only found in February in relation to January SIC. Extrapolating the most robust results suggests that, inmore »the absence of other forcings, the SIC loss between 1979 and 2016 would have induced a 2°–3°C decade−1winter warming in northeastern North America and a 40–60 m decade−1increase in the height of the Iceland high, if linearity and perpetual winter conditions could be assumed.

    « less
  4. Abstract The Sea Surface Temperature Anomaly (SSTA) in tropical Atlantic during boreal spring and summer shows two dominant modes: a basin-warming and a meridional dipole mode, respectively. Observational and coupled model simulations indicate that the former induces a Pacific La Niña in the succeeding winter whereas the latter cannot. The basin-warming forcing induces a La Niña through a Kelvin wave response and the associated wind-evaporation-SST-convection (WESC) feedback over the northern Indian Ocean (NIO) and Maritime Continent (MC). Anomalous Kelvin wave easterly interacts with the monsoonal westerly, leading to a warm SSTA and a northwest-southeast oriented heating anomaly in NIO/MC, which further induces easterly and cold SSTA over the equatorial Pacific. In contrast, the dipole forcing has little impact on the Indian and Pacific Oceans due to the offsetting of the Kelvin wave to the asymmetric Atlantic heating. Further observational and modeling studies towards the Tropical North Atlantic (TNA) and Equatorial Atlantic (EA) SSTA modes indicate that the TNA (EA) forcing induces a CP- (EP-) type ENSO. In both cases, the Kelvin wave response and the WESC feedback over the NIO/MC are important in conveying the Atlantic’s impact. The difference lies in distinctive Rossby wave responses – A marked westerly anomalymore »appears in the equatorial eastern Pacific (EEP) for the TNA forcing (due to its westward location) while no significant wind response is observed in EEP for the EA forcing. The westerly anomaly prevents a cooling tendency in EEP through anomalous zonal and vertical advection according to a mixed-layer heat budget analysis.« less
  5. Abstract

    El Niño–Southern Oscillation (ENSO) is an important but not the only source of interannual variability over the Indo–western Pacific. Non-ENSO forced variability in the region has received recent attention because of the implications for rainy-season prediction. Using a 35-member CESM1 Large Ensemble (CESM-LE) and 30 CMIP6 models, this study shows that the ensemble means project intensified interannual variability for precipitation, low-level winds, and sea level pressure under global warming, associated with the enhanced large-scale anomalous anticyclone (AAC) over the tropical northwestern (NW) Pacific after the ENSO signal is removed. A decomposition based on the column water vapor budget reveals that enhanced precipitation variability is due to the increased background specific humidity. The resultant anomalous diabatic heating intensifies the AAC, which further strengthens the precipitation anomalies. Over the tropical NW Pacific, the wind-induced evaporative cooling on the southeastern flank of the AAC is countered by the increased shortwave radiation due to the strengthened precipitation reduction. Tropospheric temperature anomalies in the ensemble means show no significant change, suggesting no apparent change of the interbasin positive feedback between the AAC and northern Indian Ocean SST. Intermodel analysis based on CMIP6 reveals that models with a larger increase in ENSO-unrelated precipitation variability overmore »the NW Pacific are associated with stronger background warming in the eastern equatorial Pacific, due to the modulated Walker and Hadley circulations.

    « less