Title: Identity Development during STEM Integration for Underrepresented Minority Students
Over the past three decades, research efforts and interventions have been implemented across the United States to increase the persistent underrepresentation of minority (URM) students in science, technology, engineering, and math (STEM). This Element systematically compares STEM interventions that offer resources and opportunities related to mentorship, research, and more. We organize the findings of this literature into a multiphase framework of STEM integration and identity development. We propose four distinct phases of STEM integration: Phase 1: High School; Phase 2: Pre-College Summer; Phase 3: College First Year; and Phase 4: College Second Year through Graduation. We combine tenets of theories about social identity, stereotypes and bias, and the five-factor operationalization of identity formation to describe each phase of STEM integration. Findings indicate the importance of exploration through exposure to STEM material, mentorship, and diverse STEM communities. We generalize lessons from STEM interventions to URM students across institutions. more »« less
Sansing-Helton, Bethany; Coover, Gail; Benton, Charles E.
(, Frontiers in Education)
null
(Ed.)
There is a strong need in the United States to increase the size and diversity of the domestic workforce trained in science, technology, engineering, and math (STEM). With almost half of all students that earn a baccalaureate degree enrolling in a 2-year public college at some point, the nation’s 2-year colleges provide great promise for improving the capacity of the STEM workforce for innovation and global competition while addressing the nation’s need for more equity between groups that have been historically included and those that have been economically and politically disenfranchized. Almost half of underrepresented minoritized (URM) students begin their post-secondary education at 2-year colleges yet their transfer rates within 5 years are only 16%. This study describes interventions put in place at a 2-year college to support increased transfer rates and STEM transfer readiness for URM STEM-interested students. The program studied, in place from 2017 through 2020, had an overall transfer rate of 45%. Analysis of administrative, transcript, and student survey data connects the program interventions to the existing research on STEM momentum and other research on URM STEM transfer success. Ultimately, this study identifies potential leading indicators of transfer readiness, providing much needed documentation and guidance on the efficacy and limitations of interventions to improve upward STEM transfer.
This study aims to provide preliminary findings on the integration of reactive molecular dynamics (RMD) simulations with evidence-based instructional strategies to enhance STEM identity and motivation in first-year, first-generation, and low-income college students. Six students from two Hispanic-serving institutions in central California participated in a three-week winter research program, which included 10 instructional modules on materials science topics. The program incorporated hands-on RMD simulation training to deepen students’ understanding of chemical reactions at the atomic level. Data collected through pre- and post-surveys and open-ended responses revealed increased STEM identity and motivation, along with improved interest, competence, performance, and recognition in STEM. Additionally, the program demonstrated the potential to enhance students’ persistence in STEM learning through positive experiences such as hands-on activities, peer collaboration, and simulations. These findings suggest the winter research program highlighting RMD may strengthen STEM identity and motivation in materials science education.
Rodríguez, Y; Angulo, N; Nieto-Wire, C; Varelas, A.
(, The Chronicle of Mentoring and Coaching 2020. Special Issue 13. UNM Mentoring Institute’s Conference Proceedings 2020. ISSN 2372-9848)
null
(Ed.)
There has been a nationwide effort to increase the number, caliber, and diversity of the science, technology, engineering, and mathematics (STEM) workforce. Research on student development shows that while there is a need, providing financial aid alone is not a sufficient factor for academic success of low-income academically talented college students. Thus, Hostos Community College has recently created the NSF-funded Hostos Engineering Academic Talent (HEAT) Scholarship Program which offers its scholars financial support and experience with a combined mentoring model where students work with faculty and peers during the academic year. This research then systematically investigated the impact of a combined faculty- and peer-mentorship approach with a population not yet studied, undergraduate STEM students at minority-serving community colleges. Preliminary data indicates that the combined mentoring approach has positive effects on scholar’s academic performance and STEM identity. The findings are expected to be generalizable to other populations, and hence provide an opportunity to expand the combined mentorship model to other STEM programs at a variety of institutions whose students could benefit from its implementation.
Vannelli, T. A.; Davishahl, E.; Babcock, J. M.; Hanley, D.; Harri, E.
(, ASEE annual conference & exposition proceedings)
The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and faculty mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented.
Vannelli, T; Davishahl, E; Babcock, M; Hanley, D; Harri, E.
(, ASEE Peer)
The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and faculty mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented.
Kuchynka, Sophie L., Gates, Alexander E., and Rivera, Luis M. Identity Development during STEM Integration for Underrepresented Minority Students. Retrieved from https://par.nsf.gov/biblio/10212818. Elements in applied social psychology . Web. doi:10.1017/9781108882071.
Kuchynka, Sophie L., Gates, Alexander E., & Rivera, Luis M. Identity Development during STEM Integration for Underrepresented Minority Students. Elements in applied social psychology, (). Retrieved from https://par.nsf.gov/biblio/10212818. https://doi.org/10.1017/9781108882071
Kuchynka, Sophie L., Gates, Alexander E., and Rivera, Luis M.
"Identity Development during STEM Integration for Underrepresented Minority Students". Elements in applied social psychology (). Country unknown/Code not available. https://doi.org/10.1017/9781108882071.https://par.nsf.gov/biblio/10212818.
@article{osti_10212818,
place = {Country unknown/Code not available},
title = {Identity Development during STEM Integration for Underrepresented Minority Students},
url = {https://par.nsf.gov/biblio/10212818},
DOI = {10.1017/9781108882071},
abstractNote = {Over the past three decades, research efforts and interventions have been implemented across the United States to increase the persistent underrepresentation of minority (URM) students in science, technology, engineering, and math (STEM). This Element systematically compares STEM interventions that offer resources and opportunities related to mentorship, research, and more. We organize the findings of this literature into a multiphase framework of STEM integration and identity development. We propose four distinct phases of STEM integration: Phase 1: High School; Phase 2: Pre-College Summer; Phase 3: College First Year; and Phase 4: College Second Year through Graduation. We combine tenets of theories about social identity, stereotypes and bias, and the five-factor operationalization of identity formation to describe each phase of STEM integration. Findings indicate the importance of exploration through exposure to STEM material, mentorship, and diverse STEM communities. We generalize lessons from STEM interventions to URM students across institutions.},
journal = {Elements in applied social psychology},
author = {Kuchynka, Sophie L. and Gates, Alexander E. and Rivera, Luis M.},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.