skip to main content


Title: Rethinking Maximum Flow Problem and Beamforming Design through Brain-inspired Geometric Lens
Increasing data rate in wireless networks (e.g., vehicular ones) can be accomplished through a two-pronged approach, which are 1) increasing the network flow rate through parallel independent routes and 2) increasing the user's link rate through beamforming codebook adaptation. Mobile relays (e.g., mobile road side units) are utilized to enable achieving these goals given their flexible positioning. First at the network level, we model regularized Laplacian matrices, which are symmetric positive definite (SPD) ones representing relay-dependent network graphs, as points over Riemannian manifolds. Inspired by the geometric classification of different tasks in the brain network, Riemannian metrics, such as Log- Euclidean metric (LEM), are utilized to choose relay positions that result in maximum LEM. Simulation results show that the proposed LEM- based relay positioning algorithm enables parallel routes and achieves maximum network flow rate, as opposed to other conventional metrics (e.g., algebraic connectivity). Second at the link level, we propose an unsupervised geometric machine learning (G-ML) approach to learn the unique channel characteristics of each relay-dependent environment. Given that spatially-correlated fading channels have SPD covariance matrices, they can be represented over Riemannian manifolds. Consequently, LEM-based Riemannian metric is utilized for unsupervised learning of the environment channels, and a matched beamforming codebook is constructed accordingly. Simulation results show that the proposed G-ML model increases the link rate after a short training period.  more » « less
Award ID(s):
1816112
NSF-PAR ID:
10212931
Author(s) / Creator(s):
Date Published:
Journal Name:
GLOBECOM 2020 - 2020 IEEE Global Communications Conference
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Despite decades of work in fast reactive planning and control, challenges remain in developing reactive motion policies on non-Euclidean manifolds and enforcing constraints while avoiding undesirable potential function local minima. This work presents a principled method for designing and fusing desired robot task behaviors into a stable robot motion policy, leveraging the geometric structure of non-Euclidean manifolds, which are prevalent in robot configuration and task spaces. Our Pullback Bundle Dynamical Systems (PBDS) framework drives desired task behaviors and prioritizes tasks using separate position-dependent and position/velocity-dependent Riemannian metrics, respectively, thus simplifying individual task design and modular composition of tasks. For enforcing constraints, we provide a class of metric-based tasks, eliminating local minima by imposing non-conflicting potential functions only for goal region attraction. We also provide a geometric optimization problem for combining tasks inspired by Riemannian Motion Policies (RMPs) that reduces to a simple least-squares problem, and we show that our approach is geometrically well-defined. We demonstrate the PBDS framework on the sphere S2 and at 300-500 Hz on a manipulator arm, and we provide task design guidance and an open-source Julia library implementation. Overall, this work presents a fast, easy-to-use framework for generating motion policies without unwanted potential function local minima on general manifolds. 
    more » « less
  2. A Riemannian cone (C,gC) is by definition a warped product C=R+×L with metric gC=dr2⊕r2gL, where (L,gL) is a compact Riemannian manifold without boundary. We say that C is a Calabi-Yau cone if gC is a Ricci-flat Kähler metric and if C admits a gC-parallel holomorphic volume form; this is equivalent to the cross-section (L,gL) being a Sasaki-Einstein manifold. In this paper, we give a complete classification of all smooth complete Calabi-Yau manifolds asymptotic to some given Calabi-Yau cone at a polynomial rate at infinity. As a special case, this includes a proof of Kronheimer's classification of ALE hyper-Kähler 4-manifolds without twistor theory. 
    more » « less
  3. One can view a partial flag variety in ℂ𝑛 as an adjoint orbit 𝜆 inside the Lie algebra of 𝑛×𝑛 skew-Hermitian matrices. We use the orbit context to study the totally nonnegative part of a partial flag variety from an algebraic, geometric, and dynamical perspective. The paper has three main parts: (1) We introduce the totally nonnegative part of 𝜆 , and describe it explicitly in several cases. We define a twist map on it, which generalizes (in type A) a map of Bloch, Flaschka, and Ratiu (Duke Math. J. 61(1): 41–65, 1990) on an isospectral manifold of Jacobi matrices. (2) We study gradient flows on 𝜆 which preserve positivity, working in three natural Riemannian metrics. In the Kähler metric, positivity is preserved in many cases of interest, extending results of Galashin, Karp, and Lam (Adv. Math. 397: Paper No. 108123, 1–23, 2022; Adv. Math. 351: 614–620, 2019). In the normal metric, positivity is essentially never preserved on a generic orbit. In the induced metric, whether positivity is preserved appears to depends on the spacing of the eigenvalues defining the orbit. (3) We present two applications. First, we discuss the topology of totally nonnegative flag varieties and amplituhedra. Galashin, Karp, and Lam (2022, 2019) showed that the former are homeomorphic to closed balls, and we interpret their argument in the orbit framework. We also show that a new family of amplituhedra, which we call twisted Vandermonde amplituhedra, are homeomorphic to closed balls. Second, we discuss the symmetric Toda flow on 𝜆 . We show that it preserves positivity, and that on the totally nonnegative part, it is a gradient flow in the Kähler metric up to applying the twist map. This extends a result of Bloch, Flaschka, and Ratiu (1990). 
    more » « less
  4. Various biomacromolecule components of extracellular matrix (ECM) link together to form a structurally stable composite. Monitoring of such matrix microstructure can be very important in studying structure-associated cellular processes, improving cellular function, and ensuring sufficient mechanical integrity in engineered tissues. This paper describes a novel method to study microscale alignment of matrix in engineered tissue scaffolds (ETS) that were usually composed of a variety of biomacromolecules derived by cells. as the organization of overall biomacromolecule network has been seldomly examined. First, a trained loading function was derived from Raman spectra of highly aligned native tissue via PCA, where prominent changes associated with Raman bands (e.g., 1444, 1465, 1605, 1627-1660 and 1665-1689 cm−1) were detected with respect to the polarized angle. These changes were mainly caused by the aligned matrix of many compounds within the tissue relative to the laser polarization, including proteins, lipids and carbohydrates. Hence this trained function was applied to quantify the alignment within ETS of various matrix components derived by cells. A simple metric called Amplitude Alignment Metric was derived to correlate the orientation dependence of polarized Raman spectra of ETS to the degree of matrix alignment. By acquiring polarized Raman spectra of ETS at micrometer regions, the Amplitude Alignment Metric was significantly higher in anisotropic ETS than isotropic ones. The PRS method showed a lower p-value for distinguishing the alignment between the two types of ETS as compared to the microscopic method for detecting fluorescently labeled protein matrices at similar microscopic scale. These results indicate the anisotropy of complex matrix in engineered tissue can be assessed at microscopic scale using a PRS-based simple metric, superior to traditional microscopic method. This PRS-based method can serve as a complementary tool for the design and assessment of engineered tissues that mimic the native matrix organizational microstructures. 
    more » « less
  5. The spatially correlated MIMO broadcast channel has grown in importance due to emerging interest in massive MIMO and mm-wave communication, but much about this channel remains unknown. In this paper, we study a two-user MIMO broadcast channel where the spatial correlation matrices corresponding to the two receivers have eigenspaces that are neither identical nor disjoint, but are partially overlapped. Spatially correlated channels occur in e.g. massive MIMO and furthermore different links may credibly have correlation eigenspaces that are neither disjoint nor equal, therefore this problem is practically motivated. This paper develops a new approach for this scenario and calculates the corresponding degrees of freedom. Our technique involves a careful decomposition of the signaling space to allow a combination of pre-beamforming along directions that depend on the relative positioning of the non-overlapping and overlapping components of the eigenspaces, along with the product superposition technique. The ideas are demonstrated with a toy example, are developed in two conditions of varying complexity, and are illuminated by numerical results. 
    more » « less