Climate change impacts the electric power system by affecting both the load and generation. It is paramount to understand this impact in the context of renewable energy as their market share has increased and will continue to grow. This study investigates the impact of climate change on the supply of renewable energy through applying novel metrics of intermittency, power production and storage required by the renewable energy plants as a function of historical climate data variability. Here we focus on and compare two disparate locations, Palma de Mallorca in the Balearic Islands and Cordova, Alaska. The main results of this analysis of wind, solar radiation and precipitation over the 1950–2020 period show that climate change impacts both the total supply available and its variability. Importantly, this impact is found to vary significantly with location. This analysis demonstrates the feasibility of a process to evaluate the local optimal mix of renewables, the changing needs for energy storage as well as the ability to evaluate the impact on grid reliability regarding both penetration of the increasing renewable resources and changes in the variability of the resource. This framework can be used to quantify the impact on both transmission grids and microgrids and can guide possible mitigation paths.
more »
« less
Valuing the Capacity Contribution of Renewable Energy Systems with Storage.
The growth of renewable energy technologies creates significant challenges for the stability of the system because of their intermittency. Nonetheless, we can value these technologies with storage systems. We model the supply by a renewable technology, wind, into a storage facility using the leaky bucket mechanism. The bucket is synonymous with storage while the leakage is equivalent to meeting load. Modelica is used to capture: (i) the time-dependence of the state of the bucket based on a physical model of storage; (ii) the stochastic representation of wind energy using wind speed data that is fed into a physical model of a wind technology; and (iii) the load, modeled as a resistor-inductor circuit. The strength of Modelica in using non-causal equations for basic sub-systems that are linked together is harnessed through its libraries. We find that there is a diminishing return to storage. Beyond a certain level of storage, the integration of a reliable baseload power supply is required to diminish the risk due to reduced reliability. The need for storage systems as a hedge against intermittency is dependent on the interplay between the supply volatilities and the stochastic load to guarantee an acceptable level of quality of service and reliability.
more »
« less
- Award ID(s):
- 1847077
- PAR ID:
- 10212936
- Editor(s):
- L. Cromarty, R. Shirwaiker
- Date Published:
- Journal Name:
- IISE transactions
- ISSN:
- 2472-5854
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Battery energy storage systems (BESS) are increasingly deployed in microgrids due to their benefits in improving system reliability and reducing operational costs. Meanwhile, advanced small modular reactors (SMRs) offer many advantages, including relatively small physical footprints, reduced capital investment, and the ability to be sited in locations not possible for larger nuclear plants. In this paper, we propose a bi-level operational planning model that enables microgrid planners to determine the optimal BESS size and technology while taking into account the optimal long-term (a yearly simulation with a 15-min resolution) operations of a microgrid with SMRs and wind turbines. Case studies are performed using realistic BESS and grid data for two BESS technologies, i.e., Li-Ion battery and compressed air energy storage. Numerical results show the effectiveness of the proposed bi-level model. The pros and cons of the two BESS technologies are also revealed.more » « less
-
Addressing resource intermittency is crucial for designing effective and economical renewable energy systems for many applications. Hydrogen as long-term energy storage medium shows promise for increasing renewables penetration into the grid. Cost-effective hybrid wind-hydrogen microgrids (HWHMs) require system-level sizing of each subcomponent. This study employs low-order HWHM component models in a system-level framework to predict HWHM performance. It introduces a novel approach to investigate the optimal sizing of HWHMs. The study uniquely addresses the impact of wind speed fluctuation amplitudes and frequency variations on system design – an area not previously explored. The model is run for 7 days using several different wind speed profiles and real load demand data from an off-grid Naval facility on an island in California. In our test cases, the findings indicate that fewer wind turbines and more hydrogen tanks are required to successfully meet demand when wind speed fluctuations increase. For example, when the wind speed fluctuation increases from 0.68 to 2.04 m/s, and the wind turbine is expected to maintain an average power equivalent to 90% of the peak load, the turbine capacity drops by 17%, requiring a 304% rise in the number of tanks. However, the frequency of wind speed variation has a negligible effect on the optimal HWHM configuration. Through a rule-based optimization algorithm, this research offers important insights for designing reliable microgrids capable of meeting critical loads despite highly variable wind conditions.more » « less
-
In recent years, global efforts towards a future with sustainable energy have intensified the development of renewable energy sources (RESs) such as offshore wind, solar photovoltaics (PVs), hydro, and geothermal. Concurrently, green hydrogen, produced via water electrolysis using these RESs, has been recognized as a promising solution to decarbonizing traditionally hard-to-abate sectors. Furthermore, hydrogen storage provides a long-duration energy storage approach to managing the intermittency of RESs, which ensures a reliable and stable electricity supply and supports electric grid operations with ancillary services like frequency and voltage regulation. Despite significant progress, the hydrogen economy remains nascent, with ongoing developments and persistent uncertainties in economic, technological, and regulatory aspects. This paper provides a comprehensive review of the green hydrogen value chain, encompassing production, transportation logistics, storage methodologies, and end-use applications, while identifying key research gaps. Particular emphasis is placed on the integration of green hydrogen into both grid-connected and islanded systems, with a focus on operational strategies to enhance grid resilience and efficiency over both the long and short terms. Moreover, this paper draws on global case studies from pioneering green hydrogen projects to inform strategies that can accelerate the adoption and large-scale deployment of green hydrogen technologies across diverse sectors and geographies.more » « less
-
Determining Reserve Requirements for Energy Storage to Manage Demand-Supply Imbalance in Power GridsProper integration of energy storage systems (ESS) into existing or future grids will depend on the effectiveness of models which seek optimal placement and sizing at the transmission and distribution levels. Current literature reviews reveal sizing methodologies can be improved to ease infrastructure integration, and those works with models useful for planning focus solely on micro-grids, wind power and forecasting, photovoltaics, or small communities. It is of interest to create an efficient, reliable ESS sizing model for large scale grids that contains interpretable models, has less sensitivity due to low model uncertainty, yet still is dependable due to an imposed reliability criterion. This work determined the minimum feasible size ESS to satisfy reserve requirements for a power grid with a high penetration of renewable sources. Results showed imposing a reliability criterion through loss of load expectation (LOLE) and energy index of reliability (EIR) resulted in more conservative capacity needs.more » « less
An official website of the United States government

