skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Optimal Sizing of Battery Energy Storage Systems for Small Modular Reactor based Microgrids
Battery energy storage systems (BESS) are increasingly deployed in microgrids due to their benefits in improving system reliability and reducing operational costs. Meanwhile, advanced small modular reactors (SMRs) offer many advantages, including relatively small physical footprints, reduced capital investment, and the ability to be sited in locations not possible for larger nuclear plants. In this paper, we propose a bi-level operational planning model that enables microgrid planners to determine the optimal BESS size and technology while taking into account the optimal long-term (a yearly simulation with a 15-min resolution) operations of a microgrid with SMRs and wind turbines. Case studies are performed using realistic BESS and grid data for two BESS technologies, i.e., Li-Ion battery and compressed air energy storage. Numerical results show the effectiveness of the proposed bi-level model. The pros and cons of the two BESS technologies are also revealed.  more » « less
Award ID(s):
1856084
PAR ID:
10322843
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE Kansas Power and Energy Conference (KPEC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Enhancing grid resilience is proposed through the integration of distributed energy resources (DERs) with microgrids. Due to the diverse nature of DERs, there is a need to explore the optimal combined operation of these energy sources within the framework of microgrids. As such, this paper presents the design, implementation and validation of a Model Predictive Control (MPC)-based secondary control scheme to tackle two challenges: optimal islanded operation, and optimal re-synchronization of a microgrid. The MPC optimization algorithm dynamically adjusts input signals, termed manipulated variables, for each DER within the microgrid, including a gas turbine, an aggregate photovoltaic (PV) unit, and an electrical battery energy storage (BESS) unit. To attain optimal islanded operation, the secondary-level controller based on Model Predictive Control (MPC) was configured to uphold microgrid functionality promptly following the islanding event. Subsequently, it assumed the task of power balancing within the microgrid and ensuring the reliability of the overall system. For optimal re-synchronization, the MPC-based controller was set to adjust the manipulated variables to synchronize voltage and angle with the point of common coupling of the system. All stages within the microgrid operation were optimally achieved through one MPC-driven control system, where the controller can effectively guide the system to different goals by updating the MPC’s target reference. More importantly, the results show that the MPC-based control scheme is capable of controlling different DERs simultaneously, mitigating potentially harmful transient rotor torques from the re-synchronization as well as maintaining the microgrid within system performance requirements. 
    more » « less
  2. This paper proposes a methodology to increase the lifetime of the central battery energy storage system (CBESS) in an islanded building-level DC microgrid (MG) and enhance the voltage quality of the system by employing the supercapacitor (SC) of electric vehicles (EVs) that utilize battery-SC hybrid energy storage systems. To this end, an adaptive filtration-based (FB) current-sharing strategy is proposed in the voltage feedback control loop of the MG that smooths the CBESS current to increase its lifetime by allocating a portion of the high-frequency current variations to the EV charger. The bandwidth of this filter is adjusted using a data-driven algorithm to guarantee that only the EV's SC absorbs the high-frequency current variations, thereby enabling the EV's battery energy storage system (BESS) to follow its standard constant current-constant voltage (CC-CV) charging profile. Therefore, the EV's SC can coordinate with the CBESS without impacting the charging profile of the EV's BESS. Also, a small-signal stability analysis is provided indicating that the proposed approach improves the marginal voltage stability of the DC MG leading to better transient response and higher voltage quality. Finally, the performance of the proposed EV charging is validated using MATLAB/Simulink and hardware-in-the-loop (HIL) testing. 
    more » « less
  3. This paper presents the implementation of battery electric vehicles (BEVs) and battery energy storage systems (BESS) within residential networked microgrids that incorporate distributed energy resources (DERs) to produce electrical power, as well as an updated daily load curve for residential households, using Renewable Alternative Power Systems Simulation (RAPSim) Software. It is projected that the number of electric vehicles within the residential neighborhoods will increase, and therefore, it is essential that we provide a description of how to implement BEVs and BESS into a microgrid simulation software. Furthermore, this paper provides insight into the behavior of a microgrid considering case studies simulated within RAPSim software to advance electric power engineering education and research at undergraduate (senior) and graduate levels in the area of DER-integrated distribution systems. 
    more » « less
  4. null (Ed.)
    With more and more renewable energy resources integrated into the power grid, the system is losing inertia because power electronics-based generators do not provide natural inertia. The low inertia will cause the microgrid to be more sensitive to disturbance and thus a small load change may result in a severe deviation in frequency. Based on the basic VSG algorithm, which is to mimic the characteristic of the traditional synchronous generator, the frequency can be controlled to a stable value faster and more smoothly when there is a fluctuation in the PV power generation and/or load change. However, characteristic of the VSG depends on the system structure in consideration of multiple generations, such as Synchronous Generator (SG), PV and Battery Energy Storage System (BESS), which greatly increases the complexity of applying VSG in practical power system. Furthermore, with BESS-VSG, Maximum Power Point (MPP) operation of PV is guaranteed. In addition, an adaptive VSG method is developed for a microgrid system, and the corresponding simulation in Matlab/Simulink shows the effectiveness of the adaptive VSG method. 
    more » « less
  5. Large-scale battery energy storage systems (BESS) play a pivotal role in advancing sustainability through their widespread applications in electrified transportation, power grids, and renewable energy systems. However, achieving optimal power management for these systems poses significant computational challenges. To address this, we propose a scalable approach that partitions the cells of a large-scale BESS into clusters based on state-of-charge (SoC), temperature, and internal resistance. Each cluster is represented by a model that approximates its collective SoC and temperature dynamics and overall power losses during charging and discharging. Using these clusters, we formulate a receding-horizon optimal power control problem to minimize power losses while promoting SoC and temperature balancing. The optimization determines a power quota for each cluster, which is then distributed among its constituent cells. This clustering approach drastically reduces computational costs by working with a smaller number of clusters instead of individual cells, enabling scalability for large-scale BESS. Simulations show a computational overhead reduction of over 60% for small-scale and 98% for large-scale BESS compared to conventional cell-level optimization. Experimental validation using a 20-cell prototype further underscores the approach's effectiveness and practical utility. 
    more » « less