Deep learning (DL) has been increasingly explored in low-dose CT image denoising. DL products have also been submitted to the FDA for premarket clearance. While having the potential to improve image quality over the filtered back projection method (FBP) and produce images quickly, generalizability of DL approaches is a major concern because the performance of a DL network can depend highly on the training data. In this work we take a residual encoder-decoder convolutional neural network (REDCNN)-based CT denoising method as an example. We investigate the effect of the scan parameters associated with the training data on the performance of this DL-based CT denoising method and identifies the scan parameters that may significantly impact its performance generalizability. This abstract particularly examines these three parameters: reconstruction kernel, dose level and slice thickness. Our preliminary results indicate that the DL network may not generalize well between FBP reconstruction kernels, but is insensitive to slice thickness for slice-wise denoising. The results also suggest that training with mixed dose levels improves denoising performance.
more »
« less
Model-based system matrix for iterative reconstruction in sub-diffuse angular-domain fluorescence optical projection tomography
This work concerns a fluorescence optical projection tomography system for low scattering tissue, like lymph nodes, with angular-domain rejection of highly scattered photons. In this regime, filtered backprojection (FBP) image reconstruction has been shown to provide reasonable quality images, yet here a comparison of image quality between images obtained by FBP and iterative image reconstruction with a Monte Carlo generated system matrix, demonstrate measurable improvements with the iterative method. Through simulated and experimental phantoms, iterative algorithms consistently outperformed FBP in terms of contrast and spatial resolution. Moreover, when projection number was reduced, in order to reduce total imaging time, iterative reconstruction suppressed artifacts that hampered the performance of FBP reconstruction (structural similarity of the reconstructed images with “truth” was improved from 0.15 ± 1.2 × 10−3to 0.66 ± 0.02); and although the system matrix was generated for homogenous optical properties, when heterogeneity (62.98 cm-1variance inµs) was introduced to simulated phantoms, the results were still comparable (structural similarity homo: 0.67 ± 0.02 vs hetero: 0.66 ± 0.02).
more »
« less
- Award ID(s):
- 1653627
- PAR ID:
- 10212989
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Biomedical Optics Express
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2156-7085
- Format(s):
- Medium: X Size: Article No. 1248
- Size(s):
- Article No. 1248
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Flexible array transducer for photoacoustic-guided interventions: phantom and ex vivo demonstrationsPhotoacoustic imaging has demonstrated recent promise for surgical guidance, enabling visualization of tool tips during surgical and non-surgical interventions. To receive photoacoustic signals, most conventional transducers are rigid, while a flexible array is able to deform and provide complete contact on surfaces with different geometries. In this work, we present photoacoustic images acquired with a flexible array transducer in multiple concave shapes in phantom andex vivobovine liver experiments targeted toward interventional photoacoustic applications. We validate our image reconstruction equations for known sensor geometries with simulated data, and we provide empirical elevation field-of-view, target position, and image quality measurements. The elevation field-of-view was 6.08 mm at a depth of 4 cm and greater than 13 mm at a depth of 5 cm. The target depth agreement with ground truth ranged 98.35-99.69%. The mean lateral and axial target sizes when imaging 600μm-core-diameter optical fibers inserted within the phantoms ranged 0.98-2.14 mm and 1.61-2.24 mm, respectively. The mean ± one standard deviation of lateral and axial target sizes when surrounded by liver tissue were 1.80±0.48 mm and 2.17±0.24 mm, respectively. Contrast, signal-to-noise, and generalized contrast-to-noise ratios ranged 6.92–24.42 dB, 46.50–67.51 dB, and 0.76–1, respectively, within the elevational field-of-view. Results establish the feasibility of implementing photoacoustic-guided surgery with a flexible array transducer.more » « less
-
The generalized contrast-to-noise ratio (gCNR) is a relatively new image quality metric designed to assess the probability of lesion detectability in ultrasound images. Although gCNR was initially demonstrated with ultrasound images, the metric is theoretically applicable to multiple types of medical images. In this paper, the applicability of gCNR to photoacoustic images is investigated. The gCNR was computed for both simulated and experimental photoacoustic images generated by amplitude-based (i.e., delay-and-sum) and coherence-based (i.e., short-lag spatial coherence) beamformers. These gCNR measurements were compared to three more traditional image quality metrics (i.e., contrast, contrast-to-noise ratio, and signal-to-noise ratio) applied to the same datasets. An increase in qualitative target visibility generally corresponded with increased gCNR. In addition, gCNR magnitude was more directly related to the separability of photoacoustic signals from their background, which degraded with the presence of limited bandwidth artifacts and increased levels of channel noise. At high gCNR values (i.e., 0.95-1), contrast, contrast-to-noise ratio, and signal-to-noise ratio varied by up to 23.7-56.2 dB, 2.0-3.4, and 26.5-7.6×1020, respectively, for simulated, experimental phantom, andin vivodata. Therefore, these traditional metrics can experience large variations when a target is fully detectable, and additional increases in these values would have no impact on photoacoustic target detectability. In addition, gCNR is robust to changes in traditional metrics introduced by applying a minimum threshold to image amplitudes. In tandem with other photoacoustic image quality metrics and with a defined range of 0 to 1, gCNR has promising potential to provide additional insight, particularly when designing new beamformers and image formation techniques and when reporting quantitative performance without an opportunity to qualitatively assess corresponding images (e.g., in text-only abstracts).more » « less
-
Glow discharge optical emission spectroscopy elemental mapping (GDOES EM), enabled by spectral imaging strategies, is an advantageous technique for direct multi-elemental analysis of solid samples in rapid timeframes. Here, a single-pixel, or point scan, spectral imaging system based on compressed sensing image sampling, is developed and optimized in terms of matrix density, compression factor, sparsifying basis, and reconstruction algorithm for coupling with GDOES EM. It is shown that a 512 matrix density at a compression factor of 30% provides the highest spatial fidelity in terms of the peak signal-to-noise ratio (PSNR) and complex wavelet structural similarity index measure (cw-SSIM) while maintaining fast measurement times. The background equivalent concentration (BEC) of Cu I at 510.5 nm is improved when implementing the discrete wavelet transform (DWT) sparsifying basis and Two-step Iterative Shrinking/Thresholding Algorithm for Linear Inverse Problems (TwIST) reconstruction algorithm. Utilizing these optimum conditions, a GDOES EM of a flexible, etched-copper circuit board was then successfully demonstrated with the compressed sensing single-pixel spectral imaging system (CSSPIS). The newly developed CSSPIS allows taking advantage of the significant cost-efficiency of point-scanning approaches (>10× vs. intensified array detector systems), while overcoming (up to several orders of magnitude) their inherent and substantial throughput limitations. Ultimately, it has the potential to be implemented on readily available commercial GDOES instruments by adapting the collection optics.more » « less
-
Photo-Acoustic Tomography (PAT) is an emerging non-invasive hybrid modality driven by a constant yearning for superior imaging performance. The image quality, however, hinges on the acoustic reflection, which may compromise the diagnostic performance. To address this challenge, we propose to incorporate a deep neural network into conventional iterative algorithms to accelerate and improve the correction of reflection artifacts. Based on the simulated PAT dataset from computed tomography (CT) scans, this network-accelerated reconstruction approach is shown to outperform two state-of-the-art iterative algorithms in terms of the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) in the presence of noise. The proposed network also demonstrates considerably higher computational efficiency than conventional iterative algorithms, which are time-consuming and cumbersome.more » « less
An official website of the United States government
