In laser spectroscopy, high photon flux can perturb the sample away from thermal equilibrium, altering its spectroscopic properties. Here, we describe an optical beam scanning apparatus that minimizes repetitive sample excitation while providing shot-to-shot sample exchange for samples such as cryostats, films, and air-tight cuvettes. In this apparatus, the beam crossing point is moved within the focal plane inside the sample by scanning both tilt angles of a flat mirror. A space-filling spiral scan pattern was designed that efficiently utilizes the sample area and mirror scanning bandwidth. Scanning beams along a spiral path is shown to increase the average number of laser shots that can be sampled before a spot on the sample cell is resampled by the laser to ∼1700 (out of the maximum possible 2500 for the sample area and laser spot size) while ensuring minimal shot-to-shot spatial overlap. Both an all-refractive version and an all-reflective version of the apparatus are demonstrated. The beam scanning apparatus does not measurably alter the time delay (less than the 0.4 fs measurement uncertainty), the laser focal spot size (less than the 2 μm measurement uncertainty), or the beam overlap (less than the 3.3% measurement uncertainty), leading to pump–probe and autocorrelation signal transients that accurately characterize the equilibrium sample.
more »
« less
Invariance of the r 2 -ln(F) relationship and attainable precision in ultrafast laser ablation experiments
Pursuing ever-smaller feature size in laser-based lithography is a research topic of vital importance to keep this technique competitive with other micro-/nano-fabrication methods. Features smaller than the diffraction-limited spot size can be obtained by “thresholding”, which utilizes the deterministic nature of damage threshold with ultrashort laser pulses and is achieved by precisely tuning pulse energies so that only the central portion of the focal spot produces permanent modification. In this paper, we examine the formulation commonly used to describe thresholding and show that the relationship between feature size (r) and laser fluence (F) is invariant with respect to the nature of laser absorption. Verified by our experiments performed on metal, semiconductor, and dielectric samples, such invariance is used to predict the smallest feature size that can be achieved for different materials in a real-world system.
more »
« less
- Award ID(s):
- 1846671
- PAR ID:
- 10213086
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 29
- Issue:
- 4
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 5635
- Size(s):
- Article No. 5635
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Fourier and the hyperbolic heat conduction equations were solved numerically to simulate a frequency-domain thermoreflectance (FDTR) experiment. Numerical solutions enable isolation of pump and probe laser spot size effects and use of realistic boundary conditions. The equations were solved in time domain and the phase lag between the temperature of the transducer (averaged over the probe laser spot) and the modulated pump laser signal was computed for a modulation frequency range of 200 kHz–200 MHz. Numerical calculations showed that extracted values of the thermal conductivity are sensitive to both the pump and probe laser spot sizes, while analytical solutions (based on Hankel transform) cannot isolate the two effects. However, for the same effective (combined) spot size, the two solutions are found to be in excellent agreement. If the substrate (computational domain) is sufficiently large, the far-field boundary conditions were found to have no effect on the computed phase lag. The interface conductance between the transducer and the substrate was found to have some effect on the extracted thermal conductivity. The hyperbolic heat conduction equation yielded almost the same results as the Fourier heat conduction equation for the particular case studied. The numerically extracted thermal conductivity value (best fit) for the silicon substrate considered in this study was found to be about 82–108 W/m/K, depending on the pump and probe laser spot sizes used.more » « less
-
Abstract Thermoelectric materials offer a unique solution for active cooling or conversion of heat to electricity within a thermal protection system due to their solid-state nature. Yet, the integration of thermoelectrics into thermal protection systems is hindered by conventional manufacturing processes, which limit the material’s shape. Laser additive manufacturing can enable freeform shapes that allow integration of thermoelectrics into systems that are favorable for thermoelectric energy conversion. Through modeling and experimentation, this work presents single melt line processing and structures of silicon germanium, a high-temperature thermoelectric material, for laser powder bed fusion. Experiments consisted of single melt lines with an Nd-YAG laser and 50-µm spot size on Si50Ge50and Si80Ge20powder compacts. We found that laser processing of silicon germanium alloys causes oxidation and processing defects that are resolved through rescanning strategies. Rapid cooling results in a microstructure with silicon-rich grains and germanium entrapped near grain boundaries for Si80Ge20and dendritic structures in Si50Ge50which are linked to the degree of undercooling during solidification. Laser-processed silicon germanium contains crystalline defects, nanoscale precipitates, and an average grain size of 24 µm. This work informs laser additive manufacturing of silicon germanium parts and uncovers process-structure relationships of laser-processed silicon germanium alloys.more » « less
-
Lasers are an essential tool in modern medical practice, and their applications span a wide spectrum of specialties. In laryngeal microsurgery, lasers are frequently used to excise tumors from the vocal folds [1]. Several research groups have recently developed robotic systems for these procedures [2-4], with the goal of providing enhanced laser aiming and cutting precision. Within this area of research, one of the problems that has received considerable attention is the automatic control of the laser focus. Briefly, laser focusing refers to the process of optically adjusting a laser beam so that it is concentrated in a small, well-defined spot – see Fig. 1. In surgical applications, tight laser focusing is desirable to maximize cutting efficiency and precision; yet, focusing can be hard to perform manually, as even slight variations (< 1 mm) in the focal distance can significantly affect the spot size. Motivated by these challenges, Kundrat and Schoob [3] recently introduced a technique to robotically maintain constant focal distance, thus enabling accurate, consistent cutting. In another study, Geraldes et al. [4] developed an automatic focus control system based on a miniaturized varifocal mirror, and they obtained spot sizes as small as 380 μm for a CO2 laser beam. Whereas previous work has mainly dealt with the problem of creating – and maintaining – small laser spots, in this paper we propose to study the utility of defocusing surgical lasers. In clinical practice, physicians defocus a laser beam whenever they wish to change its effect from cutting to heating – e.g., to thermally seal a blood vessel [5]. To the best of our knowledge, no previous work has studied the problem of robotically regulating the laser focus to achieve controlled tissue heating, which is precisely the contribution of the present manuscript. In the following sections, we first briefly review the dynamics of thermal laser-tissue interactions and then propose a controller capable of heating tissue according to a prescribed temperature profile. Laser-tissue interactions are generally considered hard to control due to the inherent inhomogeneity of biological tissue [6], which can create significant variability in its thermal response to laser irradiation. In this paper, we use methods from nonlinear control theory to synthesize a temperature controller capable of working on virtually any tissue type without any prior knowledge of its physical properties.more » « less
-
Abstract Parallel laser photogrammetry (PLP), which consists of attaching two or three parallel laser beams at a known inter‐beam distance to a camera, can be used to collect morphological measurements of organisms noninvasively. The lasers project onto the photo being taken, and because the inter‐beam distance is known, they act as a scale for image analysis programs like ImageJ. Traditionally, this method has been used to measure larger morphological traits (e.g., limb length, crown‐rump length) to serve as proxies for overall body size, whereas applications to smaller anatomical features remain limited. To that end, we used PLP to measure the testes of 18 free‐living mantled howler monkeys (Alouatta palliata)at La Selva Biological Station, Costa Rica. We tested whether this method could reliably measure this relatively small and globular morphology, and whether it could detect differences among individuals. We tested reliability in three ways: within‐photo (coefficient of variation [CV] = 4.7%), between‐photo (CV = 5.5%), and interobserver (intraclass correlation = 0.92). We found an average volume of 36.2 cm3and a range of 16.4–54.4 cm3, indicating variation in testes size between individuals. Furthermore, these sizes are consistent with a previous study that collected measurements by hand, suggesting that PLP is a useful method for making noninvasive measurements of testes.more » « less
An official website of the United States government
