skip to main content


Title: The 405 kyr and 2.4 Myr eccentricity components in Cenozoic carbon isotope records
Abstract. Cenozoic stable carbon (δ13C) and oxygen (δ18O)isotope ratios of deep-sea foraminiferal calcite co-vary with the 405 kyreccentricity cycle, suggesting a link between orbital forcing, the climatesystem, and the carbon cycle. Variations in δ18O are partlyforced by ice-volume changes that have mostly occurred since the Oligocene.The cyclic δ13C–δ18O co-variation is found inboth ice-free and glaciated climate states, however. Consequently, thereshould be a mechanism that forces the δ13C cyclesindependently of ice dynamics. In search of this mechanism, we simulate theresponse of several key components of the carbon cycle to orbital forcing inthe Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir model(LOSCAR). We force the model by changing the burial of organic carbon in theocean with various astronomical solutions and noise and study the responseof the main carbon cycle tracers. Consistent with previous work, thesimulations reveal that low-frequency oscillations in the forcing arepreferentially amplified relative to higher frequencies. However, whileoceanic δ13C mainly varies with a 405 kyr period in themodel, the dynamics of dissolved inorganic carbon in the oceans and ofatmospheric CO2 are dominated by the 2.4 Myr cycle of eccentricity.This implies that the total ocean and atmosphere carbon inventory is stronglyinfluenced by carbon cycle variability that exceeds the timescale of the405 kyr period (such as silicate weathering). To test the applicability ofthe model results, we assemble a long (∼22 Myr) δ13C andδ18O composite record spanning the Eocene to Miocene(34–12 Ma) and perform spectral analysis to assess the presence of the2.4 Myr cycle. We find that, while the 2.4 Myr cycle appears to beovershadowed by long-term changes in the composite record, it is present asan amplitude modulator of the 405 and 100 kyr eccentricity cycles.  more » « less
Award ID(s):
1658023
NSF-PAR ID:
10213257
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Climate of the Past
Volume:
15
Issue:
1
ISSN:
1814-9332
Page Range / eLocation ID:
91 to 104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Since the middle Miocene (15 Ma, million years ago), the Earth's climate has undergone a long-term cooling trend, characterised by a reduction in ocean temperatures of up to 7–8 ∘C. The causes of this cooling are primarily thought to be due to tectonic plate movements driving changes in large-scale ocean circulation patterns, and hence heat redistribution, in conjunction with a drop in atmospheric greenhouse gas forcing (and attendant ice-sheet growth and feedback). In this study, we assess the potential to constrain the evolving patterns of global ocean circulation and cooling over the last 15 Ma by assimilating a variety of marine sediment proxy data in an Earth system model. We do this by first compiling surface and benthic ocean temperature and benthic carbon-13 (δ13C) data in a series of seven time slices spaced at approximately 2.5 Myr intervals. We then pair this with a corresponding series of tectonic and climate boundary condition reconstructions in the cGENIE (“muffin” release) Earth system model, including alternative possibilities for an open vs. closed Central American Seaway (CAS) from 10 Ma onwards. In the cGENIE model, we explore uncertainty in greenhouse gas forcing and the magnitude of North Pacific to North Atlantic salinity flux adjustment required in the model to create an Atlantic Meridional Overturning Circulation (AMOC) of a specific strength, via a series of 12 (one for each tectonic reconstruction) 2D parameter ensembles. Each ensemble member is then tested against the observed global temperature and benthic δ13C patterns. We identify that a relatively high CO2 equivalent forcing of 1120 ppm is required at 15 Ma in cGENIE to reproduce proxy temperature estimates in the model, noting that this CO2 forcing is dependent on the cGENIE model's climate sensitivity and that it incorporates the effects of all greenhouse gases. We find that reproducing the observed long-term cooling trend requires a progressively declining greenhouse gas forcing in the model. In parallel to this, the strength of the AMOC increases with time despite a reduction in the salinity of the surface North Atlantic over the cooling period, attributable to falling intensity of the hydrological cycle and to lowering polar temperatures, both caused by CO2-driven global cooling. We also find that a closed CAS from 10 Ma to present shows better agreement between benthic δ13C patterns and our particular series of model configurations and data. A final outcome of our analysis is a pronounced ca. 1.5 ‰ decline occurring in atmospheric (and ca. 1 ‰ ocean surface) δ13C that could be used to inform future δ13C-based proxy reconstructions. 
    more » « less
  2. Abstract

    In the early Pleistocene, global temperature cycles predominantly varied with ~41‐kyr (obliquity‐scale) periodicity. Atmospheric greenhouse gas concentrations likely played a role in these climate cycles; marine sediments provide an indirect geochemical means to estimate early Pleistocene CO2. Here we present a boron isotope‐based record of continuous high‐resolution surface ocean pH and inferred atmospheric CO2changes. Our results show that, within a window of time in the early Pleistocene (1.38–1.54 Ma), pCO2varied with obliquity, confirming that, analogous to late Pleistocene conditions, the carbon cycle and climate covaried at ~1.5 Ma. Pairing the reconstructed early Pleistocene pCO2amplitude (92 ± 13 μatm) with a comparably smaller global surface temperature glacial/interglacial amplitude (3.0 ± 0.5 K) yields a surface temperature change to CO2radiative forcing ratio ofS[CO2]~0.75 (±0.5) °C−1·W−1·m−2, as compared to the late PleistoceneS[CO2]value of ~1.75 (±0.6) °C−1·W−1·m−2. This direct comparison of pCO2and temperature implicitly incorporates the large ice sheet forcing as an internal feedback and is not directly applicable to future warming. We evaluate this result with a simple climate model and show that the presumably thinner, though extensive, northern hemisphere ice sheets would increase surface temperature sensitivity to radiative forcing. Thus, the mechanism to dampen actual temperature variability in the early Pleistocene more likely lies with Southern Ocean circulation dynamics or antiphase hemispheric forcing. We also compile this new carbon dioxide record with published Plio‐Pleistocene δ11B records using consistent boundary conditions and explore potential reasons for the discrepancy between Pliocene pCO2based on different planktic foraminifera.

     
    more » « less
  3. Beaufort, Luc (Ed.)
    Abstract. The evolution of the Cenozoic cryosphere from unipolar to bipolar over the past 30 million years (Myr) is broadly known. Highly resolved records of carbonate (CaCO3) content provide insight into the evolution of regional and global climate, cryosphere, and carbon cycle dynamics. Here, we generate the first Southeast Atlantic CaCO3 content record spanning the last 30 Myr, derived from X-ray fluorescence (XRF) ln(Ca/Fe) data collected at Ocean Drilling Program Site 1264 (Walvis Ridge, SE Atlantic Ocean). We present a comprehensive and continuous depth and age model for the entirety of Site 1264 (~316 m; 30 Myr). This constitutes a key reference framework for future palaeoclimatic and palaeoceanographic studies at this location. We identify three phases with distinctly different orbital controls on Southeast Atlantic CaCO3 deposition, corresponding to major developments in climate, the cryosphere and the carbon cycle: (1) strong ~110 kyr eccentricity pacing prevails during Oligocene–Miocene global warmth (~30–13 Ma), (2) increased eccentricity-modulated precession pacing appears after the middle Miocene ClimateTransition (mMCT) (~14–8 Ma), and (3) pervasive obliquity pacing appears in the late Miocene (~7.7–3.3 Ma) following greater importance of high-latitude processes, such as increased glacial activity and high-latitude cooling. The lowest CaCO3 content (92 %–94 %) occurs between 18.5 and 14.5 Ma, potentially reflecting dissolution caused by widespread early Miocene warmth and preceding Antarctic deglaciation across the Miocene Climatic Optimum (~17–14.5 Ma) by 1.5 Myr. The emergence of precession pacing of CaCO3 deposition at Site 1264 after ~14 Ma could signal a reorganisation of surface and/or deep-water circulation in this region following Antarctic reglaciation at the mMCT. The increased sensitivity to precession at Site 1264 between 14 and 13 Ma is associated with an increase in mass accumulation rates (MARs) and reflects increased regional CaCO3 productivity and/or recurrent influxes of cooler, less corrosive deep waters. The highest carbonate content (%CaCO3) and MARs indicate that the late Miocene–early PlioceneBiogenic Bloom (LMBB) occurs between ~7.8 and 3.3Ma at Site 1264; broadly contemporaneous with the LMBB in the equatorial Pacific Ocean. At Site 1264, the onset of the LMBB roughly coincides with appearance of strong obliquity pacing of %CaCO3, reflecting increased high-latitude forcing. The global expression of the LMBB may reflect increased nutrient input into the global ocean resulting from enhanced aeolian dust and/or glacial/chemical weathering fluxes, due to enhanced glacial activity and increased meridional temperature gradients. Regional variability in the timing and amplitude of the LMBB may be driven by regional differences in cooling, continental aridification and/or changes in ocean circulation in the late Miocene. 
    more » « less
  4. Abstract

    The Late Cretaceous–Early Paleogene is the most recent period in Earth history that experienced sustained global greenhouse warmth on multimillion year timescales. Yet, knowledge of ambient climate conditions and the complex interplay between various forcing mechanisms are still poorly constrained. Here we present a 14.75 million‐year‐long, high‐resolution, orbitally tuned record of paired climate change and carbon‐cycling for this enigmatic period (~67–52 Ma), which we compare to an up‐to‐date compilation of atmosphericpCO2records. Our climate and carbon‐cycling records, which are the highest resolution stratigraphically complete records to be constructed from a single marine site in the Atlantic Ocean, feature all major transient warming events (termed “hyperthermals”) known from this time period. We identify eccentricity as the dominant pacemaker of climate and the carbon cycle throughout the Late Maastrichtian to Early Eocene, through the modulation of precession. On average, changes in the carbon cycle lagged changes in climate by ~23,000 years at the long eccentricity (405,000‐year) band, and by ~3,000–4,500 years at the short eccentricity (100,000‐year) band, suggesting that light carbon was released as a positive feedback to warming induced by orbital forcing. Our new record places all known hyperthermals of the Late Maastrichtian–Early Eocene into temporal context with regards to evolving ambient climate of the time. We constrain potential carbon cycle influences of Large Igneous Province volcanism associated with the Deccan Traps and North Atlantic Igneous Province, as well as the sensitivity of climate and the carbon‐cycle to the 2.4 million‐year‐long eccentricity cycle.

     
    more » « less
  5. Abstract

    The planets’ gravitational interaction causes rhythmic changes in Earth’s orbital parameters (also called Milanković cycles), which have powerful applications in geology and astrochronology. For instance, the primary astronomical eccentricity cycle due to the secular frequency term (g2g5) (∼405 kyr in the recent past) utilized in deep-time analyses is dominated by the orbits of Venus and Jupiter, i.e., long eccentricity cycle. The widely accepted and long-held view is that (g2g5) was practically stable in the past and may hence be used as a “metronome” to reconstruct accurate geologic ages and chronologies. However, using state-of-the-art integrations of the solar system, we show here that (g2g5) can become unstable over long timescales, without major changes in, or destabilization of, planetary orbits. The (g2g5) disruption is due to the secular resonanceσ12= (g1g2) + (s1s2), a major contributor to solar system chaos. We demonstrate that entering/exiting theσ12resonance is a common phenomenon on long timescales, occurring in ∼40% of our solutions. Duringσ12-resonance episodes, (g2g5) is very weak or absent and Earth’s orbital eccentricity and climate-forcing spectrum are unrecognizable compared to the recent past. Our results have fundamental implications for geology and astrochronology, as well as climate forcing, because the paradigm that the long eccentricity cycle is stable, dominates Earth's orbital eccentricity spectrum, and has a period of ∼405 kyr requires revision.

     
    more » « less