Abstract. The penultimate deglaciation (PDG, ∼138–128 thousand years before present, hereafter ka) is the transition fromthe penultimate glacial maximum (PGM)to the Last Interglacial (LIG, ∼129–116 ka).The LIG stands out as one of the warmest interglacials of the last 800 000 years (hereafter kyr),with high-latitude temperature warmer than today and global sea level likely higher by at least 6 m.Considering the transient nature of the Earth system,the LIG climate and ice-sheet evolution were certainly influenced by the changesoccurring during the penultimate deglaciation.It is thus importantto investigate, with coupled atmosphere–ocean general circulation models (AOGCMs),the climate and environmental response to the large changesin boundary conditions(i.e. orbital configuration, atmospheric greenhouse gas concentrations, ice-sheet geometry and associated meltwater fluxes) occurring during the penultimate deglaciation. A deglaciation working group has recently been set up as part of the Paleoclimate Modelling Intercomparison Project (PMIP) phase 4, with a protocolto perform transient simulations of the last deglaciation (19–11 ka; although the protocol covers 26–0 ka).Similar to the last deglaciation, the disintegration of continental ice sheets during the penultimate deglaciation led to significant changesin the oceanic circulation during Heinrich Stadial 11 (∼136–129 ka).However, the two deglaciations bear significant differences in magnitude and temporal evolution of climate and environmental changes. Here, as part of the Past Global Changes (PAGES)-PMIP working group on Quaternary interglacials (QUIGS), we propose a protocol to perform transient simulations of the penultimate deglaciationunder the auspices of PMIP4.This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration ofcontinental ice sheets.This experiment is designed for AOGCMs to assessthe coupled response of the climate system to all forcings.Additional sensitivity experiments are proposed to evaluate the response to each forcing.Finally, a selection of paleo-records representing different parts of the climate system is presented, providing an appropriatebenchmark for upcoming model–data comparisons across the penultimate deglaciation.
more »
« less
The 405 kyr and 2.4 Myr eccentricity components in Cenozoic carbon isotope records
Abstract. Cenozoic stable carbon (δ13C) and oxygen (δ18O)isotope ratios of deep-sea foraminiferal calcite co-vary with the 405 kyreccentricity cycle, suggesting a link between orbital forcing, the climatesystem, and the carbon cycle. Variations in δ18O are partlyforced by ice-volume changes that have mostly occurred since the Oligocene.The cyclic δ13C–δ18O co-variation is found inboth ice-free and glaciated climate states, however. Consequently, thereshould be a mechanism that forces the δ13C cyclesindependently of ice dynamics. In search of this mechanism, we simulate theresponse of several key components of the carbon cycle to orbital forcing inthe Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir model(LOSCAR). We force the model by changing the burial of organic carbon in theocean with various astronomical solutions and noise and study the responseof the main carbon cycle tracers. Consistent with previous work, thesimulations reveal that low-frequency oscillations in the forcing arepreferentially amplified relative to higher frequencies. However, whileoceanic δ13C mainly varies with a 405 kyr period in themodel, the dynamics of dissolved inorganic carbon in the oceans and ofatmospheric CO2 are dominated by the 2.4 Myr cycle of eccentricity.This implies that the total ocean and atmosphere carbon inventory is stronglyinfluenced by carbon cycle variability that exceeds the timescale of the405 kyr period (such as silicate weathering). To test the applicability ofthe model results, we assemble a long (∼22 Myr) δ13C andδ18O composite record spanning the Eocene to Miocene(34–12 Ma) and perform spectral analysis to assess the presence of the2.4 Myr cycle. We find that, while the 2.4 Myr cycle appears to beovershadowed by long-term changes in the composite record, it is present asan amplitude modulator of the 405 and 100 kyr eccentricity cycles.
more »
« less
- Award ID(s):
- 1658023
- NSF-PAR ID:
- 10213257
- Date Published:
- Journal Name:
- Climate of the Past
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 1814-9332
- Page Range / eLocation ID:
- 91 to 104
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. The Arctic is warming 2 to 3 times faster than the global average, partly due to changes in short-lived climate forcers (SLCFs) including aerosols. In order to study the effects of atmospheric aerosols in this warming, recent past (1990–2014) and future (2015–2050) simulations have been carried out using the GISS-E2.1 Earth system model to study the aerosol burdens and their radiative and climate impacts over the Arctic (>60∘ N), using anthropogenic emissions from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases, while global annual mean greenhouse gas concentrations were prescribed and kept fixed in all simulations. Results showed that the simulations have underestimated observed surface aerosol levels, in particular black carbon (BC) and sulfate (SO42-), by more than 50 %, with the smallest biases calculated for the atmosphere-only simulations, where winds are nudged to reanalysis data. CMIP6 simulations performed slightly better in reproducing the observed surface aerosol concentrations and climate parameters, compared to the Eclipse simulations. In addition, simulations where atmosphere and ocean are fully coupled had slightly smaller biases in aerosol levels compared to atmosphere-only simulations without nudging. Arctic BC, organic aerosol (OA), and SO42- burdens decrease significantly in all simulations by 10 %–60 % following the reductions of 7 %–78 % in emission projections, with the Eclipse ensemble showing larger reductions in Arctic aerosol burdens compared to the CMIP6 ensemble. For the 2030–2050 period, the Eclipse ensemble simulated a radiative forcing due to aerosol–radiation interactions (RFARI) of -0.39±0.01 W m−2, which is −0.08 W m−2 larger than the 1990–2010 mean forcing (−0.32 W m−2), of which -0.24±0.01 W m−2 was attributed to the anthropogenic aerosols. The CMIP6 ensemble simulated a RFARI of −0.35 to −0.40 W m−2 for the same period, which is −0.01 to −0.06 W m−2 larger than the 1990–2010 mean forcing of −0.35 W m−2. The scenarios with little to no mitigation (worst-case scenarios) led to very small changes in the RFARI, while scenarios with medium to large emission mitigations led to increases in the negative RFARI, mainly due to the decrease in the positive BC forcing and the decrease in the negative SO42- forcing. The anthropogenic aerosols accounted for −0.24 to −0.26 W m−2 of the net RFARI in 2030–2050 period, in Eclipse and CMIP6 ensembles, respectively. Finally, all simulations showed an increase in the Arctic surface air temperatures throughout the simulation period. By 2050, surface air temperatures are projected to increase by 2.4 to 2.6 ∘C in the Eclipse ensemble and 1.9 to 2.6 ∘C in the CMIP6 ensemble, compared to the 1990–2010 mean. Overall, results show that even the scenarios with largest emission reductions leads to similar impact on the future Arctic surface air temperatures and sea-ice extent compared to scenarios with smaller emission reductions, implying reductions of greenhouse emissions are still necessary to mitigate climate change.more » « less
-
Abstract. Free-drift estimates of sea ice motion are necessary to produce a seamless observational record combining buoy and satellite-derived sea ice motionvectors. We develop a new parameterization for the free drift of sea ice based on wind forcing, wind turning angle, sea ice state variables(thickness and concentration), and estimates of the ocean currents. Given the fact that the spatial distribution of the wind–ice–ocean transfercoefficient has a similar structure to that of the spatial distribution of sea ice thickness, we take the standard free-drift equation and introducea wind–ice–ocean transfer coefficient that scales linearly with ice thickness. Results show a mean bias error of −0.5 cm s−1(low-speed bias) and a root-mean-square error of 5.1 cm s−1, considering daily buoy drift data as truth. This represents a 35 %reduction of the error on drift speed compared to the free-drift estimates used in the Polar Pathfinder dataset (Tschudi et al., 2019b). Thethickness-dependent transfer coefficient provides an improved seasonality and long-term trend of the sea ice drift speed, with a minimum (maximum)drift speed in May (October), compared to July (January) for the constant transfer coefficient parameterizations which simply follow the peak inmean surface wind stresses. Over the 1979–2019 period, the trend in sea ice drift in this new model is +0.45 cm s−1 per decadecompared with +0.39 cm s−1 per decade from the buoy observations, whereas there is essentially no trend in a free-driftparameterization with a constant transfer coefficient (−0.09 cm s−1 per decade) or the Polar Pathfinder free-drift input data(−0.01 cm s−1 per decade). The optimal wind turning angle obtained from a least-squares fitting is 25∘, resulting in a meanerror and a root-mean-square error of +3 and 42∘ on the direction of the drift, respectively. The ocean current estimates obtained from theminimization procedure resolve key large-scale features such as the Beaufort Gyre and Transpolar Drift Stream and are in good agreement with oceanstate estimates from the ECCO, GLORYS, and PIOMAS ice–ocean reanalyses, as well as geostrophic currents from dynamical ocean topography, with aroot-mean-square difference of 2.4, 2.9, 2.6, and 3.8 cm s−1, respectively. Finally, a repeat of the analysis on two sub-sections of thetime series (pre- and post-2000) clearly shows the acceleration of the Beaufort Gyre (particularly along the Alaskan coastline) and an expansion ofthe gyre in the post-2000s, concurrent with a thinning of the sea ice cover and the observed acceleration of the ice drift speed and oceancurrents. This new dataset is publicly available for complementing merged observation-based sea ice drift datasets that include satellite and buoydrift records.more » « less
-
Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm.more » « less
-
Abstract Multiple stable equilibria are intrinsic to many complex dynamical systems, and have been identified in a hierarchy of climate models. Motivated by the idea that the Quaternary glacial–interglacial cycles could have resulted from orbitally forced transitions between multiple stable states mediated by internal feedbacks, this study investigates the existence and mechanisms of multiple equilibria in an idealized, energy-conserving atmosphere–ocean–sea ice general circulation model with a fully coupled carbon cycle. Four stable climates are found for identical insolation and global carbon inventory: an ice-free Warm climate, two intermediate climates (Cold and Waterbelt), and a fully ice-covered Snowball climate. A fifth state, a small ice cap state between Warm and Cold, is found to be barely unstable. Using custom radiative kernels and a thorough sampling of the model’s internal variability, three equilibria are investigated through the state dependence of radiative feedback processes. For fast feedbacks, the systematic decrease in surface albedo feedback from Cold to Warm states is offset by a similar increase in longwave water vapor feedback. At longer time scales, the key role of the carbon cycle is a dramatic lengthening of the adjustment time comparable to orbital forcings near the Warm state. The dynamics of the coupled climate–carbon system are thus not well separated in time from orbital forcings, raising interesting possibilities for nonlinear triggers for large climate changes. Significance Statement How do carbon cycle and other physical processes affect the physical and mathematical properties of the climate system? We use a complex climate model coupled with a carbon cycle to simulate the climate evolution under different initial conditions. Four stable climate states are possible, from the Snowball Earth, in which ice covers the whole planet, to the Warm state, an ice-free world. The carbon cycle drives the global climate change at an extremely slower pace after sea ice retreats. Sea ice and water vapor, on the other hand, constitute the major contributing factors that accelerate faster climate change.more » « less