- Award ID(s):
- 1702913
- Publication Date:
- NSF-PAR ID:
- 10309982
- Journal Name:
- Climate of the Past
- Volume:
- 17
- Issue:
- 5
- ISSN:
- 1814-9332
- Sponsoring Org:
- National Science Foundation
More Like this
-
Neogene ocean temperatures are characterized by sustained warmth during the mid-Miocene Climatic Optimum followed by gradual cooling through the late Miocene culminating in Northern Hemisphere glaciation in the early Pleistocene. While the magnitude of sea surface temperature (SST) cooling is enhanced at higher latitudes, existing records suggest that the timing is nearly synchronous across the world's oceans. However, the Nordic Seas, north of the Greenland-Scotland Ridge (GSR), experienced rapid cooling steps (14.5-14 Ma, 12.5-12 Ma, 8-6 Ma) that are out of sync with the global SST cooling trend. Here we present a new alkenone paleo-SST record from Ocean Drilling Program (ODP) site 985 in the western Norwegian Sea (66°56' N, 6°27' W) and investigate the relationships between rapid SST change, depth of the GSR, ocean circulation, and deep-water formation using proxy and model data. We find significant (p < 0.01) inverse relationships between the depth of the GSR and SSTs at ODP sites north of the ridge (985 and 907), positive relationships between GSR depth and the SST gradient across the ridge, and inverse relationships between deep water production and SST at ODP sites 985 and 907. In sum, these observations suggest that during global Miocene cooling, intervals of GSRmore »
-
Abstract We reconstruct sea surface temperatures (SSTs) at Deep Sea Drilling Project Site 608 (42.836°N, 23.087°), north of the Azores Front, and Ocean Drilling Program Site 982 (57.516°N, 15.866°), under the North Atlantic Current, in order to track Miocene (23.1–5.3 Ma) development of North Atlantic surface waters. Mean annual SSTs from TEX86and UK′37proxy estimates at both sites were 10–15 °C higher than modern through the Miocene Climatic Optimum (17–14.5 Ma). During the global cooling of the Middle Miocene Climate Transition (~14.5–12.5 Ma), SSTs at midlatitude Site 608 cooled by ~6 °C, whereas high‐latitude Site 982 cooled by only ~2 °C, resulting in an ~4 Myr collapse of the SST gradient between the two sites. This regional pattern is inconsistent with an increased latitudinal surface temperature gradient, as generally associated with global cooling episodes linked to decreasing
p CO2levels. Instead, the pattern is best explained by enhanced ocean heat transport into the high‐latitude North Atlantic superimposed on the global cooling trend, probably due to enhanced Atlantic meridional overturning circulation and/or a stronger North Atlantic Current. During global late Miocene cooling (~8–7 Ma), surface waters cooled by ~6 °C at Site 982 while minimal change occurred at Site 608, reestablishing the North Atlantic SST gradient. The collapse and reemergence of the SSTmore » -
Abstract The effect of anthropogenic climate change in the ocean is challenging to project because atmosphere-ocean general circulation models (AOGCMs) respond differently to forcing. This study focuses on changes in the Atlantic Meridional Overturning Circulation (AMOC), ocean heat content (
OHC), and the spatial pattern of ocean dynamic sea level ($$\Delta$$ ). We analyse experiments following the FAFMIP protocol, in which AOGCMs are forced at the ocean surface with standardised heat, freshwater and momentum flux perturbations, typical of those produced by doubling$$\Delta \zeta$$ . Using two new heat-flux-forced experiments, we find that the AMOC weakening is mainly caused by and linearly related to the North Atlantic heat flux perturbation, and further weakened by a positive coupled heat flux feedback. The quantitative relationships are model-dependent, but few models show significant AMOC change due to freshwater or momentum forcing, or to heat flux forcing outside the North Atlantic. AMOC decline causes warming at the South Atlantic-Southern Ocean interface. It does not strongly affect the global-mean vertical distribution of$$\hbox {CO}_{{2}}$$ OHC, which is dominated by the Southern Ocean. AMOC decline strongly affects$$\Delta$$ in the North Atlantic, with smaller effects in the Southern Ocean and North Pacific. The ensemble-mean$$\Delta \zeta$$ and$$\Delta \zeta$$ OHC patterns are mostly attributable to the heat added bymore »$$\Delta$$ -
Abstract Climate models consistently project (i) a decline in the formation of North Atlantic Deep Water (NADW) and (ii) a strengthening of the Southern Hemisphere westerly winds in response to anthropogenic greenhouse gas forcing. These two processes suggest potentially conflicting tendencies of the Atlantic meridional overturning circulation (AMOC): a weakening AMOC due to changes in the North Atlantic but a strengthening AMOC due to changes in the Southern Ocean. Here we focus on the transient evolution of the global ocean overturning circulation in response to a perturbation to the NADW formation rate. We propose that the adjustment of the Indo-Pacific overturning circulation is a critical component in mediating AMOC changes. Using a hierarchy of ocean and climate models, we show that the Indo-Pacific overturning circulation provides the first response to AMOC changes through wave processes, whereas the Southern Ocean overturning circulation responds on longer (centennial to millennial) time scales that are determined by eddy diffusion processes. Changes in the Indo-Pacific overturning circulation compensate AMOC changes, which allows the Southern Ocean overturning circulation to evolve independently of the AMOC, at least over time scales up to many decades. In a warming climate, the Indo-Pacific develops an overturning circulation anomaly associated withmore »
-
Abstract The Gulf of Maine and surrounding western North Atlantic shelf are some of the fastest warming regions of the worlds oceans. The lack of long-term observational records from this area inhibits the ability to assess the timing and initial causes of this warming and consequently accurately predict future changes to this ecologically and economically important region. Here we present oxygen, nitrogen, and radiocarbon isotope data measured in Arctica islandica shells collected in the western North Atlantic to better understand the past temperature and ocean circulation variability of the region over the last 300 years. We combine these results with output from the Community Earth System Model Last Millennium Ensemble simulations to assess the temporal and spatial context of these isotope records. We find that the isotope records capture the end and reversal of a millennium-scale cooling trend in the Gulf of Maine. Last Millennium Ensemble single-forcing simulations indicate that this cooling trend appears to be largely driven by volcanic forcing. The nitrogen and radiocarbon records indicate that ocean circulation is in part driving the reconstructed hydrographic changes, pointing to a potential role of the Atlantic Meridional Overturning Circulation in regulating Gulf of Maine temperatures as suggested by the Lastmore »