skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Work in Progress: Developing a Procedure for Identifying Indicators of "Over-persistence"
This work-in-progress paper represents our initial approach to developing a procedure for identifying indicators of “overpersistence.” This approach is one facet of a larger NSF CAREER project, “Empowering students to be adaptive decision-makers,” to model student pathways using a ground-up curriculum-specific approach with the ultimate goal of helping students choose more strategic paths to graduation. We define “overpersisters” as those students who enter college with a specific major in mind and never sway from that choice, nor graduate in a timely manner. While persistence in and commitment to a major choice are generally viewed positively, some students become fixated on a major that may not be the best fit for them. These overpersisters often spend years in a degree program and eventually leave the institution with no degree, but potentially with a substantial amount of debt. Identifying academic events that cause these students to eventually withdraw from school is the first step towards creating better strategies through which they can persist and succeed in their undergraduate studies. The concept of overpersistence is defined relative to a particular major, so a student who tries a different major before leaving the institution would not be considered an overpersister. We selected the discipline of Mechanical Engineering as a starting point because of its large enrollment and the first author’s familiarity with the discipline. Our goal is to begin developing a procedure that will identify indicators of overpersistence and provide a foundation that will help to answer the larger research question: In Mechanical Engineering, what academic events commonly lead to late dropout without changes in academic major?  more » « less
Award ID(s):
1745347
PAR ID:
10213559
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2017 ASEE Annual Conference & Exposition Proceedings
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract — In this Full Research Paper, we propose a new definition of overpersistence in an engineering discipline and investigate its implications at one institution. Precisely defining overpersistence in both a conceptual and operational sense is a critical step in predicting overpersistence and identifying indicators that will allow for personalized guidance for students at risk of overpersisting. We have previously identified our population of interest as students who enroll at the institution as first-time-in-college students for at least one year, attend full time, have had six years to graduate, and have enrolled in only one degree-granting program. Within this group, we operationalized overpersistence by identifying students as overpersisters if they either (i) left the university without a degree or (ii) enrolled in the same major for six years and did not graduate. In this work, we revisit our definition of overpersistence using more recent data by reconsidering two groups of students in particular – those who spend only a short time in the discipline before leaving the institution (formerly classified as overpersisters), and those who spend a long time in the discipline but eventually switch majors (formerly excluded from the initial population). We conclude that the most appropriate definition of overpersistence at an institution with a first-year engineering program is when a student spends three or more semesters in their first discipline-specific major and does not graduate in that major within six years of matriculation to the institution. These results will be useful for researchers and practitioners seeking to identify alternative paths for success for students who are at risk of overpersisting in a major. 
    more » « less
  2. Abstract We present a visual, quantitative analysis of the academic pathways of Black men and women who enroll in Electrical Engineering (EE) or Mechanical Engineering (ME) at any point during their undergraduate experience (N=4816). Our research provides evidence that more Black students choose EE than ME, in contrast to national data for all races that show that more students major in ME than EE. While more Black students initially enroll in EE overall, ME attracts a larger proportion of its Black students from other majors and retains a larger fraction. Black women are particularly persistent in ME (58%). Most Black students who leave EE or ME leave the institution without a degree. Seventy-eight percent of Black men and 65% of Black women who leave ME leave the institution without a degree. Of those leaving EE, 74% of Black men and 64% of Black women leave the institution without a degree. This examination of quantitative differences between disciplines lays a foundation for qualitative study through in depth student interviews of Black students in these majors. 
    more » « less
  3. According to the National Science Foundation, 50% of Black engineering students who have received a bachelor’s and master’s degree attended a community college at some point during their academic career. However, while research highlights the importance of supporting underrepresented racial and ethnic minorities (URMs) in STEM disciplines, there is a dearth of literature focusing on URMs in community colleges who pursue engineering and other science/math-based majors. Further, Black undergraduates in community colleges are often homogenized by area of study, with little regard for their specific major/discipline. Similarly, while engineering education research has begun to focus on the population of community college students, less attention has been paid to unpacking the experiences of racial subgroups of community college attendees. The engineering student transfer process has specific aspects related to it being a selective and challenging discipline (e.g., limited enrollment policies, engineering culture shock) that warrants a closer investigation. The purpose of this paper is to examine the experiences of a small population of students who have recently transferred from several community colleges to one four-year engineering school. Specifically, we will present preliminary findings derived from interviews with three Black students who started their academic careers at several community colleges in a Mid-Atlantic state, before transferring to the flagship institution of that same state. Interview transcripts will undergo a thorough analysis and will be coded to document rich themes. Multiple analyses of coded interview data will be performed by several members of the research team, as well as external evaluation members who are leading scholars in STEM and/or transfer education research. This research is part of a larger-scale, three year qualitative study, which will examine the academic trajectories of two distinct groups of Blacks in engineering majors: 1) Blacks born and educated in the United States and 2) Those born and educated in other countries. By looking at these populations distinctly, we will build upon past literature that disaggregates the experiences of Black STEM students who represent multiple identities across the African diaspora. Through this lens, we hope to highlight the impact that cultural background may have on the transfer experience. The theoretical framework guiding this study posits that the persistence of Black transfer students in engineering is a longitudinal process influenced by the intersection of both individual and institutional factors. We draw from the STEM transfer model, noting that the transfer process commences during a student’s community college education and continues through his/her transfer and enrollment in an engineering program at a four-year institution. The following factors contribute to our conceptualization of this process: pre-college background, community college prior to transfer, initial transfer to the four-year university, nearing 4-year degree completion. 
    more » « less
  4. Improving retention rates of engineering students in higher education has been a nationwide goal aimed at expanding and diversifying the engineering workforce. Initial mathematics placement in institutions is a major predictor for attrition, with 52% of students from two-year institutions starting below calculus as opposed to 14.4% of students from four-year institutions starting below calculus. Consequently, national data shows that the attrition rate for engineering students at two-year institutions is 69% while the attrition rate for engineering students at four-year institutions is 37%. As the prevalence of students taking an indirect path towards completing an engineering degree increases, the examination of those students’ pathways towards an engineering degree is necessary. In the SC:SUPPORTED project, we conducted focus groups with students from two-year and four-year institutions across the state of South Carolina. Themes related to academic influence, social influence and family influence emerged from analysis of the focus group data. Within family influences, which are the ways family members affect a student’s persistence in education, choice of major, and choice of institution, there were differences between students attending two-year institutions and those attending four-year institutions. Family members include parents, siblings, other relatives, and also “fictive” family. The goal of this paper is to discuss the factors that influence why students choose engineering and choose to attend a two-year or four-year institution. 
    more » « less
  5. Improving retention rates of engineering students in higher education has been a nationwide goal aimed at expanding and diversifying the engineering workforce. Initial mathematics placement in institutions is a major predictor for attrition, with 52% of students from two-year institutions starting below calculus as opposed to 14.4% of students from four-year institutions starting below calculus. Consequently, national data shows that the attrition rate for engineering students at two-year institutions is 69% while the attrition rate for engineering students at four-year institutions is 37%. As the prevalence of students taking an indirect path towards completing an engineering degree increases, the examination of those students’ pathways towards an engineering degree is necessary. In the SC:SUPPORTED project, we conducted focus groups with students from two-year and four-year institutions across the state of South Carolina. Themes related to academic influence, social influence and family influence emerged from analysis of the focus group data. Within family influences, which are the ways family members affect a student’s persistence in education, choice of major, and choice of institution, there were differences between students attending two-year institutions and those attending four-year institutions. Family members include parents, siblings, other relatives, and also “fictive” family. The goal of this paper is to discuss the factors that influence why students choose engineering and choose to attend a two-year or four-year institution. 
    more » « less