skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting the Definition of Overpersistence
Abstract — In this Full Research Paper, we propose a new definition of overpersistence in an engineering discipline and investigate its implications at one institution. Precisely defining overpersistence in both a conceptual and operational sense is a critical step in predicting overpersistence and identifying indicators that will allow for personalized guidance for students at risk of overpersisting. We have previously identified our population of interest as students who enroll at the institution as first-time-in-college students for at least one year, attend full time, have had six years to graduate, and have enrolled in only one degree-granting program. Within this group, we operationalized overpersistence by identifying students as overpersisters if they either (i) left the university without a degree or (ii) enrolled in the same major for six years and did not graduate. In this work, we revisit our definition of overpersistence using more recent data by reconsidering two groups of students in particular – those who spend only a short time in the discipline before leaving the institution (formerly classified as overpersisters), and those who spend a long time in the discipline but eventually switch majors (formerly excluded from the initial population). We conclude that the most appropriate definition of overpersistence at an institution with a first-year engineering program is when a student spends three or more semesters in their first discipline-specific major and does not graduate in that major within six years of matriculation to the institution. These results will be useful for researchers and practitioners seeking to identify alternative paths for success for students who are at risk of overpersisting in a major.  more » « less
Award ID(s):
1745347
PAR ID:
10316531
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Frontiers in Education Conference (FIE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This work-in-progress paper represents our initial approach to developing a procedure for identifying indicators of “overpersistence.” This approach is one facet of a larger NSF CAREER project, “Empowering students to be adaptive decision-makers,” to model student pathways using a ground-up curriculum-specific approach with the ultimate goal of helping students choose more strategic paths to graduation. We define “overpersisters” as those students who enter college with a specific major in mind and never sway from that choice, nor graduate in a timely manner. While persistence in and commitment to a major choice are generally viewed positively, some students become fixated on a major that may not be the best fit for them. These overpersisters often spend years in a degree program and eventually leave the institution with no degree, but potentially with a substantial amount of debt. Identifying academic events that cause these students to eventually withdraw from school is the first step towards creating better strategies through which they can persist and succeed in their undergraduate studies. The concept of overpersistence is defined relative to a particular major, so a student who tries a different major before leaving the institution would not be considered an overpersister. We selected the discipline of Mechanical Engineering as a starting point because of its large enrollment and the first author’s familiarity with the discipline. Our goal is to begin developing a procedure that will identify indicators of overpersistence and provide a foundation that will help to answer the larger research question: In Mechanical Engineering, what academic events commonly lead to late dropout without changes in academic major? 
    more » « less
  2. Multiple stakeholders are interested in measuring undergraduate student success in college across academic fields. Different metrics might appeal to different stakeholders. Some metrics such as the fraction of first-time, full-time students who start in the fall who graduate within six years, the graduation rate, are federally mandated by the U.S. Department of Education, Integrated Postsecondary Education Data System (IPEDS). We argue that this calculation of graduation rate is inherently problematic because it excludes up to 60% of students who transfer into an institution, enroll part-time, or enroll in terms other than the fall. By expanding the starters definition, we propose a graduation rate definition that includes conventionally excluded students and provides information on progression in a specific program. Stickiness is an even more-inclusive alternative, measuring a program’s success in graduating all undergraduates ever enrolled in the program. In this work, programs are grouped into six academic fields: Arts and Humanities, Business, Engineering, Other, Social Sciences, and STM (Science, Technology, and Mathematics. Stickiness is the percentage of students who ever enroll in an academic field that graduate in the same field. We use the Multiple Institution Dataset for Investigating Engineering Longitudinal Development (MIDFIELD) 2023 which contains unit-record data for over 2 million individual students at 19 institutions. For the academic fields studied, Engineering has the highest graduation rate and third highest stickiness. Social Sciences and Business also have higher graduation rates and stickiness than the other fields. We also track the relative fraction of students migrating to and from each academic field. This paper continues our work to derive better metrics for understanding student success. 
    more » « less
  3. Educating Engineering Students Innovatively (EESI, pronounced "easy") is a student support program for sophomores to seniors enrolled in an engineering major offered at the FAMU-FSU College of Engineering. The program is designed to: (1) foster a sense of community, (2) improve students’ engineering skill sets, and (3) provide each student with their direct path of interest from college to the STEM workforce. Universities spend much effort to provide student support programs for first-year students, such as summer bridge programs. However, sometimes upper-level students are not offered the same level of support and can fall off the STEM pathway. Introducing experiential learning experiences centered on the safe space (or community) of students provides a model to address underrepresentation in the STEM workforce and graduate school. This case study of an experiential learning program will provide an option for universities to consider underrepresented minority upperclassmen retention methods. We will present data for students enrolled in an engineering major between 2018-2021, considering students' gender, first-generation, and financial status. This paper will report the results of four (4) different cohorts of EESI Scholars who completed at least one semester in the student support program. We compare the retention rates, persistence, and academic performance of EESI Scholars compared with students that did not participate in the student support program as one measure of the program's success. Then we provide the best practices of the experiential learning program that led to students' persistence at ***** University. This paper could assist other colleges that would like to ensure Black students, who have been historically underrepresented in STEM, persistence in their engineering programs. 
    more » « less
  4. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees. 
    more » « less
  5. null (Ed.)
    Focusing on community college transfer students who declared a STEM major at their initial transfer to a four-year research university, this study examined the extent to which students’ sociodemographic characteristics and academic factors were related to STEM persistence and attrition. This study tracked multiple cohorts of transfer students matriculated at the fouryear university between fall 2007 and fall 2014, and used data drawn from their transcript records. The findings indicated that STEM switchers, who obtained a non-STEM degree within six years of their initial transfer, were more likely to be older learners, female, and of non-Asian race/ethnicity than STEM persisters, who earned a STEM degree within six years. STEM Leavers, who did not earn any degree within six years, were more likely to be older, non-Asian, first-generation, and had a low or middle family income than STEM persisters. The study also found that STEM switchers and leavers were more likely to transfer over a lower number of courses, attempted fewer courses in the first semester, withdrew one or more courses, and received a lower semester GPA. In terms of mathematics preparation, STEM switchers and leavers were less likely to complete Calculus I or more advanced courses. The study contributes to the literature on STEM persistence and attrition, especially for STEM aspirants who transferred from community colleges to four-year universities. The findings also provide new knowledge about STEM attrition by comparing students who departed from STEM with or without earning a non-STEM degree. 
    more » « less