skip to main content


Title: Thermoset composite recycling – Driving forces, development, and evolution of new opportunities
Thermoset composites represent a substantial challenge for recycling, even as composite products increase in market interest. The concept of putting all future thermoset composite products into landfills over the next decades is unlikely to continue. This paper examines the three eras in the history of thermoset product recycling, the drivers for increased recycling, and possible future trends. Technology for managing thermoset composite products at end-of-life first focused on retrieving fiber and to a lesser extent resin. Then in a second era, research focused on better utilization of recovered fiber and finally the third era is now keeping more of the original resin–fiber structure to reuse these composites. Drivers are emerging to stimulate thermoset recycling, including States with success in recycling other challenging products (tires, carpets, automobile parts, etc.) setting policy and fees to encourage recycling. The evolution of heat recovery as a thermoset recycling option in Europe is another driver. Additionally, efforts at certification of recycled fiber quality may stimulate greater reuse.  more » « less
Award ID(s):
1743682
NSF-PAR ID:
10213561
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Composite Materials
Volume:
52
Issue:
8
ISSN:
0021-9983
Page Range / eLocation ID:
1033 to 1043
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 3D printing allows for moldless fabrication of continuous fiber composites with high design freedom and low manufacturing cost per part, which makes it particularly well-suited for rapid prototyping and composite product development. Compared to thermal-curable resins, UV-curable resins enable the 3D printing of composites with high fiber content and faster manufacturing speeds. However, the printed composites exhibit low mechanical strength and weak interfacial bonding for high-performance engineering applications. In addition, they are typically not reprocessable or repairable; if they could be, it would dramatically benefit the rapid prototyping of composite products with improved durability, reliability, cost savings, and streamlined workflow. In this study, we demonstrate that the recently emerged two-stage UV-curable resin is an ideal material candidate to tackle these grand challenges in 3D printing of thermoset composites with continuous carbon fiber. The resin consists primarily of acrylate monomers and crosslinkers with exchangeable covalent bonds. During the printing process, composite filaments containing up to 30.9% carbon fiber can be rapidly deposited and solidified through UV irradiation. After printing, the printed composites are subjected to post-heating. Their mechanical stiffness, strength, and inter-filament bonding are significantly enhanced due to the bond exchange reactions within the thermoset matrix. Furthermore, the utilization of the two-stage curable resin enables the repair, reshaping, and recycling of 3D printed thermosetting composites. This study represents the first detailed study to explore the benefits of using two-stage UV curable resins for composite printing. The fundamental understanding could potentially be extended to other types of two-stage curable resins with different molecular mechanisms. 
    more » « less
  2. In the last few decades, fiber reinforced composites have been established as the materials of choice for lightweight applications in a large spectrum of applications ranging from aerospace, defense, and marine industries to automotive products and consumer goods. With the growing shift to sustainable resources, natural fibers, especially plant fibers, received increased interest throughout the years. Among these natural fibers, silks stand out with low stiffness and a high failure strain, unlike conventional fibers such as carbon or glass. Although gaining traction as a natural alternative reinforcement, silk still has little to no commercial uses despite its higher performance. Besides its higher mechanical properties and lightweight, silk exhibits other attractive properties such as improved flame retardancy and biodegradability. To take advantage of these features, proper fiber/matrix adhesion must be achieved. Such silk/matrix bonding can be inferred from the silk/resin affinity during composite manufacturing. In this study, the affinity/wettability of several silk/resin systems were analyzed via static contact angles using imageJ software to determine candidates for silk reinforced composite laminates with better adhesion. To this end, a combination of four silk fibers and three resin systems were investigated. The investigated silk fibers were Ahimsa, Charmeuse, Habotai, and Tussah; and the resins included a vinyl ester (Hydrex) and two epoxies (INF114 and INR). For Tussah fibers, initial contact angles were consistently one of the lowest. However, these fibers exhibited a higher contact angle over time compared to the other silk fibers studied. Conversely, Ahimsa silk fibers showed the highest initial contact angle, then quickly dropped to com-plete wetting. Habotai fibers dropped towards complete wetting quickly, however, consistently slowed considerably shortly after. Charmeuse fibers performed similarly to Ahimsa fibers with Hydrex, however was considerably slower to wetting with the other resins. Among the investigated resins, Hydrex showed the best affinity to silk fibers with the majority of the lowest initial contact angles and the fastest to complete wetting. INF114 consistently receded at a slower, albeit steady, rate until reaching complete wetting apart from Tussah. INR showed the highest initial contact angles and never reached complete wetting after an hour for two of the four silks investigated. Therefore, the best silk/resin affinity was observed for the Ahimsa and Charmeuse silk fibers and the Hydrex vinyl ester resin. In future work, silk composites with these constituents would be investigated. 
    more » « less
  3. Additive manufacturing, otherwise known as three-dimensional (3D) printing, is a rapidly growing technique that is increasingly used for the production of polymer products, resulting in an associated increase in plastic waste generation. Waste from a particular class of 3D-printing, known as vat photopolymerization, is of particular concern, as these materials are typically thermosets that cannot be recycled or reused. Here, we report a mechanical recycling process that uses cryomilling to generate a thermoset powder from photocured parts that can be recycled back into the neat liquid monomer resin. Mechanical recycling with three different materials is demonstrated: two commercial resins with characteristic brittle and elastic mechanical properties and a third model material formulated in-house. Studies using photocured films showed that up to 30 wt% of the model material could be recycled producing a toughness of 2.01 ± 0.55 MJ/m3, within error of neat analogues (1.65 ± 0.27 MJ/m3). Using dynamic mechanical analysis and atomic force microscopy-based infrared spectroscopy, it was determined that monomers diffuse into the recycled powder particles, creating interpenetrating networks upon ultraviolet (UV) exposure. This process mechanically adheres the particles to the matrix, preventing them from acting as failure sites under a tensile load. Finally, 3D-printing of the commercial brittle material with 10 wt% recycle content produced high quality parts that were visually similar. The maximum stress (46.7 ± 6.2 MPa) and strain at break (11.6 ± 2.3%) of 3D-printed parts with recycle content were within error the same as neat analogues (52.0 ± 1.7 MPa; 13.4 ± 1.8%). Overall, this work demonstrates mechanical recycling of photopolymerized thermosets and shows promise for the reuse of photopolymerized 3D-printing waste. 
    more » « less
  4. This presentation will describe conditions for the use of oxygen as a reagent for the selective cleavage of thermoset composites. Carbon fiber-reinforced polymer (CFRP) composites have a prominent role in aviation, sporting goods, marine, and other manufacturing sectors and are accumulating en masse as waste, both at end-of-life and as manufacturing defects. We have recently introduced a method to use oxygen itself along with an appropriate catalyst selectively to disassemble such fully-cured composite wastes to recover both ordered carbon fiber sheets and organic materials suitable for re-manufacturing of second-life resin systems. 
    more » « less
  5. Carbon fiber reinforced polymer (CFRP) composites have been increasingly used to replace metal parts in many industries such as aerospace, marine, automotive, and sporting goods. The CFRP parts compared with their metallic counter parts have the advantages of lightweight, significantly higher tensile strength, stiffer, and corrosion resistant. On the other hand, compared with many metal parts, the CFRP parts have many well-known disadvantages including the lower toughness, lower through-thickness tensile and shear strengths, lower thermal conductivity, lower electrical conductivity, and lower operating temperature. These disadvantages have made the conversion from metal parts into CFRP parts challenging and costly to design, manufacture, and maintain. The use of nanoparticles in polymer has been studied in the recent two decades. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been dispersed in various thermoset and thermoplastic polymers and improved the mechanical, electrical, and thermal properties; however, the properties were not comparable to CFRP. Later, researchers tried to infuse CNTs or CNFs into either carbon fiber preforms [1] or glass fiber preforms [2] for improving the mechanical properties. But the results were marginal and with great uncertainty due to the challenges of nanoparticle dispersion, filtering, and alignment while being infused through the fiber preform. The glass fiber preform experiments ended with relatively more consistent improvement than the carbon fiber preform experiments since that the glass fiber preform has significantly larger pores than the carbon fiber preform' s. The small pore size presented a great challenge for infusing millions of unaligned long CNTs or CNFs through the carbon fiber preform without being filtered. To infuse long CNFs or CNTs through the carbon fiber preform and achieve reliable improvements, especially for 55% or higher carbon fiber volume fraction with increasingly tighter pores, an innovative plan for the processing and nano-reinforcing strategy is necessary. The z-threading strategy [3, 4, 5] has been reported to have consistent experimental successes in achieving the statistically meaningful improvement in multifunctional properties. The manufacturing steps of the CNF z-threaded CFRP (ZT-CFRP) are: (1) disperse the CNFs in a resin, (2) use a strong electrical field to align the CNFs in either the B-stage epoxy film or a CNF/resin impregnated sponge layer, whereas the CNFs are aligned in the through-thickness direction of the film or sponge layer. (3) place the resin film or sponge layer on a preheated dry carbon fiber fabric and press the resin film into the hot carbon fabric and allow the resin flow to carry the well-aligned CNFs to thread through the pores in the carbon fabric. (4) cool down the resin saturated and CNF z-threaded carbon fiber fabric to obtain the ZT-CFRP prepreg. (5) use the ZT-CFRP prepreg to make the ZT-CFRP laminate. Compared with the traditional CFRP, the ZT-CFRP laminates were reported of having improvement in the Mode-I delamination toughness, interlaminar shear strength, longitudinal compressive strength, through-thickness electrical conductivity, through-thickness thermal conductivity, and can reach the carbon fiber volume fraction of 55-80%. It is an effective approach to achieve a multifunctional CFRP for potentially expanding CFRP's applications. 
    more » « less