skip to main content


Title: Multi-scale games: Representing and solving games on networks with group structure
Network games provide a natural machinery to compactly represent strategic interactions among agents whose payoffs exhibit sparsity in their dependence on the actions of others. Besides encoding interaction sparsity, however, real networks often exhibit a multi-scale structure, in which agents can be grouped into communities, those communities further grouped, and so on, and where interactions among such groups may also exhibit sparsity. We present a general model of multi-scale network games that encodes such multi-level structure. We then develop several algorithmic approaches that leverage this multi-scale structure, and derive sufficient conditions for convergence of these to a Nash equilibrium. Our numerical experiments demonstrate that the proposed approaches enable orders of magnitude improvements in scalability when computing Nash equilibria in such games. For example, we can solve previously intractable instances involving up to 1 million agents in under 15 minutes.  more » « less
Award ID(s):
1905558
NSF-PAR ID:
10213629
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Network games have provided a framework to study strategic decision making processes that are governed by an underlying network of interdependencies among agents. However, existing models do not account for environments in which agents simultaneously interact over multiple networks. In this paper, we propose a model of multiplex network games to capture the different modalities of interactions among strategic agents. We then explore how the properties of the constituent networks of a multiplex network can undermine or support the uniqueness of its Nash equilibria. We first show that in general, even if the constituent networks are guaranteed to have unique Nash equi- libria in isolation, the resulting multiplex need not have a unique equilibrium. We then identify certain subclasses of networks wherein guarantees on the uniqueness of Nash equilibria on the isolated networks lead to the same guarantees on the multiplex network game. We further highlight that both the largest and smallest eigenvalues of the constituent networks (reflecting their connectivity and two-sidedness, respectively) are instrumental in determining the uniqueness of the multiplex network equilibrium. Together, our findings shed light on the reasons for the fragility of the uniqueness of equilibria in multiplex networks, and potential interventions to alleviate them. 
    more » « less
  2. Network games are commonly used to capture the strategic interactions among interconnected agents in simultaneous moves. The agents’ actions in a Nash equilibrium must take into account the mutual dependencies connecting them, which is typically obtained by solving a set of fixed point equations. Stackelberg games, on the other hand, model the sequential moves between agents that are categorized as leaders and followers. The corresponding solution concept, the subgame perfect equilibrium, is typically obtained using backward induction. Both game forms enjoy very wide use in the (cyber)security literature, the network game often as a template to study security investment and externality – also referred to as the Interdependent Security (IDS) games – and the Stackelberg game as a formalism to model a variety of attacker-defender scenarios. In this study we examine a model that combines both types of strategic reasoning: the interdependency as well as sequential moves. Specifically, we consider a scenario with a network of interconnected first movers (firms or defenders, whose security efforts and practices collectively determine the security posture of the eco-system) and one or more second movers, the attacker(s), who determine how much effort to exert on attacking the many potential targets. This gives rise to an equilibrium concept that embodies both types of equilibria mentioned above. We will examine how its existence and uniqueness conditions differ from that for a standard network game. Of particular interest are comparisons between the two game forms in terms of effort exerted by the defender(s) and the attacker(s), respectively, and the free-riding behavior among the defenders. 
    more » « less
  3. Andreas Krause, Emma Brunskill (Ed.)
    Executing actions in a correlated manner is a common strategy for human coordination that often leads to better cooperation, which is also potentially beneficial for cooperative multi-agent reinforcement learning (MARL). However, the recent success of MARL relies heavily on the convenient paradigm of purely decentralized execution, where there is no action correlation among agents for scalability considerations. In this work, we introduce a Bayesian network to inaugurate correlations between agents’ action selections in their joint policy. Theoretically, we establish a theoretical justification for why action dependencies are beneficial by deriving the multi-agent policy gradient formula under such a Bayesian network joint policy and proving its global convergence to Nash equilibria under tabular softmax policy parameterization in cooperative Markov games. Further, by equipping existing MARL algorithms with a recent method of differentiable directed acyclic graphs (DAGs), we develop practical algorithms to learn the context-aware Bayesian network policies in scenarios with partial observability and various difficulty. We also dynamically decrease the sparsity of the learned DAG throughout the training process, which leads to weakly or even purely independent policies for decentralized execution. Empirical results on a range of MARL benchmarks show the benefits of our approach. 
    more » « less
  4. We provide a polynomial-time, scalable algorithm for equilibrium computation in multi-agent influence games on networks, extending work of Bindel, Kleinberg, and Oren (2015) from the single-agent to the multi-agent setting. In games of influence, agents have limited advertising budget to influence the initial predisposition of nodes in some network towards their products, but the eventual decisions of the nodes are determined by the stationary state of DeGroot opinion dynamics on the network, which takes over after the seeding (Ahmadinejad et al. 2014, 2015). In multi-agent systems, how should agents spend their budgets to seed the network to maximize their utility in anticipation of other advertising agents and the network dynamics? We show that Nash equilibria of this game are pure and (under weak assumptions) unique, and can be computed in polynomial time; we test our model by computing equilibria using mirror descent for the two-agent case on random graphs. 
    more » « less
  5. We analyze a class of stochastic dynamic games among teams with asymmetric information, where members of a team share their observations internally with a delay of d. Each team is associated with a controlled Markov Chain, whose dynamics are coupled through the players’ actions. These games exhibit challenges in both theory and practice due to the presence of signaling and the increasing domain of information over time. We develop a general approach to characterize a subset of Nash equilibria where the agents can use a compressed version of their information, instead of the full information, to choose their actions. We identify two subclasses of strategies: sufficient private information-Based (SPIB) strategies, which only compress private information, and compressed information-based (CIB) strategies, which compress both common and private information. We show that SPIB-strategy-based equilibria exist and the set of payoff profiles of such equilibria is the same as that of all Nash equilibria. On the other hand, we show that CIB-strategy-based equilibria may not exist. We develop a backward inductive sequential procedure, whose solution (if it exists) provides a CIB strategy-based equilibrium. We identify some instances where we can guarantee the existence of a solution to the above procedure. Our results highlight the tension among compression of information, ability of compression-based strategies to sustain all or some of the equilibrium payoff profiles, and backward inductive sequential computation of equilibria in stochastic dynamic games with asymmetric information. 
    more » « less