skip to main content


Title: Assessment of the Catastrophic Asia Floods and Potentially Affected Population in Summer 2020 Using VIIRS Flood Products
Since 2 June 2020, unusual heavy and continuous rainfall from the Asian summer monsoon rainy season caused widespread catastrophic floods in many Asian countries, including primarily the two most populated countries, China and India. To detect and monitor the floods and estimate the potentially affected population, data from sensors aboard the operational polar-orbiting satellites Suomi National Polar-Orbiting Partnership (S-NPP) and National Oceanic and Atmospheric Administration (NOAA)-20 were used. The Visible Infrared Imaging Radiometer Suite (VIIRS) with a spatial resolution of 375 m available twice per day aboard these two satellites can observe floodwaters over large spatial regions. The flood maps derived from the VIIRS imagery provide a big picture over the entire flooding regions, and demonstrate that, in July, in China, floods mainly occurred across the Yangtze River, Hui River and their tributaries. The VIIRS 5-day composite flood maps, along with a population density dataset, were combined to estimate the population potentially exposed (PPE) to flooding. We report here on the procedure to combine such data using the Zonal Statistic Function from the ArcGIS Spatial Analyst toolbox. Based on the flood extend for July 2020 along with the population density dataset, the Jiangxi and Anhui provinces were the most affected regions with more than 10 million people in Jingdezhen and Shangrao in Jiangxi province, and Fuyang and Luan in Anhui province, and it is estimated that about 55 million people in China might have been affected by the floodwaters. In addition to China, several other countries, including India, Bangladesh, and Myanmar, were also severely impacted. In India, the worst inundated states include Utter Pradesh, Bihar, Assam, and West Bengal, and it is estimated that about 40 million people might have been affected by severe floods, mainly in the northern states of Bihar, Assam, and West Bengal. The most affected country was Bangladesh, where one third of the country was underwater, and the estimated population potentially exposed to floods is about 30 million in Bangladesh.  more » « less
Award ID(s):
1841520
NSF-PAR ID:
10213669
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
19
ISSN:
2072-4292
Page Range / eLocation ID:
3176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 m floodwater depth maps, even when shown as 2D images, can provide more details about floodwater distribution, while 3D visualizations can demonstrate floodwater depth more clearly in relative to the terrain and provide a more direct perception of the inundation situations caused by hurricanes. The use of 3D visualization can help users clearly see floodwaters occurring over various types of terrain conditions, thus identifying a hazardous flood from non-hazardous flood types. Furthermore, 3D maps displaying floodwater depth may provide additional information for rescue efforts and damage assessments. The downscaling model can help enhance the capabilities of moderate-to-coarse resolution sensors, such as those used in operational weather satellites, flood detection and monitoring. 
    more » « less
  2. null (Ed.)
    Among all the natural hazards throughout the world, floods occur most frequently. They occur in high latitude regions, such as: 82% of the area of North America; most of Russia; Norway, Finland, and Sweden in North Europe; China and Japan in Asia. River flooding due to ice jams may happen during the spring breakup season. The Northeast and North Central region, and some areas of the western United States, are especially harmed by floods due to ice jams and snowmelt. In this study, observations from operational satellites are used to map and monitor floods due to ice jams and snowmelt. For a coarse-to-moderate resolution sensor on board the operational satellites, like the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the National Polar-orbiting Partnership (NPP) and the Joint Polar Satellite System (JPSS) series, and the Advanced Baseline Imager (ABI) on board the GOES-R series, a pixel is usually composed of a mix of water and land. Water fraction can provide more information and can be estimated through mixed-pixel decomposition. The flood map can be derived from the water fraction difference after and before flooding. In high latitude areas, while conventional observations are usually sparse, multiple observations can be available from polar-orbiting satellites during a single day, and river forecasters can observe ice movement, snowmelt status and flood water evolution from satellite-based flood maps, which is very helpful in ice jam determination and flood prediction. The high temporal resolution of geostationary satellite imagery, like that of the ABI, can provide the greatest extent of flood signals, and multi-day composite flood products from higher spatial resolution imagery, such as VIIRS, can pinpoint areas of interest to uncover more details. One unique feature of our JPSS and GOES-R flood products is that they include not only normal flood type, but also a special flood type as the supra-snow/ice flood, and moreover, snow and ice masks. Following the demonstrations in this study, it is expected that the JPSS and GOES-R flood products, with ice and snow information, can allow dynamic monitoring and prediction of floods due to ice jams and snowmelt for wide-end users. 
    more » « less
  3. Abstract

    Riverine flooding associated with landfalling tropical cyclones (TCs) in the western North Pacific basin is responsible for some of the most severe socioeconomic losses in East Asian countries. However, little is known about the spatial and temporal patterns of TC flooding and its climate controls, which constrain the predictive understandings of flood risk in this highly populated region. We provide a climatological characterization of TC flooding over China based on an exceptional network of stream gauging stations across the entire country. The most extreme floods in central and northeastern China are associated with TCs despite infrequent TC visits in these regions. Temporal variations in TC flooding demonstrate a mixture of controls tied to surface temperature anomalies in the northern hemisphere. The established links between TC flooding and climate controls present a potentially predictive tool of TC flood risk over China and other East Asian countries under future climate conditions.

     
    more » « less
  4. Background

    Despite significant global progress in reducing neonatal mortality, bacterial sepsis remains a major cause of neonatal deaths.Klebsiella pneumoniae(K.pneumoniae) is the leading pathogen globally underlying cases of neonatal sepsis and is frequently resistant to antibiotic treatment regimens recommended by the World Health Organization (WHO), including first-line therapy with ampicillin and gentamicin, second-line therapy with amikacin and ceftazidime, and meropenem. Maternal vaccination to prevent neonatal infection could reduce the burden ofK.pneumoniaeneonatal sepsis in low- and middle-income countries (LMICs), but the potential impact of vaccination remains poorly quantified. We estimated the potential impact of such vaccination on cases and deaths ofK.pneumoniaeneonatal sepsis and project the global effects of routine immunization of pregnant women with theK.pneumoniaevaccine as antimicrobial resistance (AMR) increases.

    Methods and findings

    We developed a Bayesian mixture-modeling framework to estimate the effects of a hypotheticalK.pneumoniaematernal vaccine with 70% efficacy administered with coverage equivalent to that of the maternal tetanus vaccine on neonatal sepsis infections and mortality. To parameterize our model, we used data from 3 global studies of neonatal sepsis and/or mortality—with 2,330 neonates who died with sepsis surveilled from 2016 to 2020 undertaken in 18 mainly LMICs across all WHO regions (Ethiopia, Kenya, Mali, Mozambique, Nigeria, Rwanda, Sierra Leone, South Africa, Uganda, Brazil, Italy, Greece, Pakistan, Bangladesh, India, Thailand, China, and Vietnam). Within these studies, 26.95% of fatal neonatal sepsis cases were culture-positive forK.pneumoniae. We analyzed 9,070K.pneumoniaegenomes from human isolates gathered globally from 2001 to 2020 to quantify the temporal rate of acquisition of AMR genes inK.pneumoniaeisolates to predict the future number of drug-resistant cases and deaths that could be averted by vaccination.

    Resistance rates to carbapenems are increasing most rapidly and 22.43% [95th percentile Bayesian credible interval (CrI): 5.24 to 41.42] of neonatal sepsis deaths are caused by meropenem-resistantK.pneumoniae. Globally, we estimate that maternal vaccination could avert 80,258 [CrI: 18,084 to 189,040] neonatal deaths and 399,015 [CrI: 334,523 to 485,442] neonatal sepsis cases yearly worldwide, accounting for more than 3.40% [CrI: 0.75 to 8.01] of all neonatal deaths. The largest relative benefits are in Africa (Sierra Leone, Mali, Niger) and South-East Asia (Bangladesh) where vaccination could avert over 6% of all neonatal deaths. Nevertheless, our modeling only considers country-level trends inK.pneumoniaeneonatal sepsis deaths and is unable to consider within-country variability in bacterial prevalence that may impact the projected burden of sepsis.

    Conclusions

    AK.pneumoniaematernal vaccine could have widespread, sustained global benefits as AMR inK.pneumoniaecontinues to increase.

     
    more » « less
  5. Over the past century, the Red River of the North has been the least stationary river in the continental United States. In Canada, historical and paleoenvironmental evidence indicates severe floods were common during the early 1800s, with the record ce 1826 flood having an estimated peak discharge 50% higher than the second-most severe flood ever observed. Unfortunately, the recorded history of flooding upstream in the United States does not begin until seven decades after this event. If 1826 was an equally exceptional flood on American reach of the river, then current flood-frequency curves for the river underestimate significantly the risks posed by future flooding. Alternatively, if the American stretch did not produce a major flood in 1826, then the recent spate of flooding that has occurred over the past two decades is exceptional within the context of the past 200 years. Communities in the Fargo-Moorhead metropolitan area are building a 58-km long, $2.75 billion (USD) diversion channel that would redirect floodwaters westward around the two cities before returning it to the main channel. Because this and other infrastructure in North Dakota and Minnesota is intended to provide protection against low-probability, high-magnitude floods, new paleoflood investigations in the region would help local, state, and federal policy-makers better understand the true flood threats posed by the Red River of the North.

     
    more » « less