skip to main content


Title: Mapping, Monitoring, and Prediction of Floods Due to Ice Jam and Snowmelt with Operational Weather Satellites
Among all the natural hazards throughout the world, floods occur most frequently. They occur in high latitude regions, such as: 82% of the area of North America; most of Russia; Norway, Finland, and Sweden in North Europe; China and Japan in Asia. River flooding due to ice jams may happen during the spring breakup season. The Northeast and North Central region, and some areas of the western United States, are especially harmed by floods due to ice jams and snowmelt. In this study, observations from operational satellites are used to map and monitor floods due to ice jams and snowmelt. For a coarse-to-moderate resolution sensor on board the operational satellites, like the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the National Polar-orbiting Partnership (NPP) and the Joint Polar Satellite System (JPSS) series, and the Advanced Baseline Imager (ABI) on board the GOES-R series, a pixel is usually composed of a mix of water and land. Water fraction can provide more information and can be estimated through mixed-pixel decomposition. The flood map can be derived from the water fraction difference after and before flooding. In high latitude areas, while conventional observations are usually sparse, multiple observations can be available from polar-orbiting satellites during a single day, and river forecasters can observe ice movement, snowmelt status and flood water evolution from satellite-based flood maps, which is very helpful in ice jam determination and flood prediction. The high temporal resolution of geostationary satellite imagery, like that of the ABI, can provide the greatest extent of flood signals, and multi-day composite flood products from higher spatial resolution imagery, such as VIIRS, can pinpoint areas of interest to uncover more details. One unique feature of our JPSS and GOES-R flood products is that they include not only normal flood type, but also a special flood type as the supra-snow/ice flood, and moreover, snow and ice masks. Following the demonstrations in this study, it is expected that the JPSS and GOES-R flood products, with ice and snow information, can allow dynamic monitoring and prediction of floods due to ice jams and snowmelt for wide-end users.  more » « less
Award ID(s):
1841520
NSF-PAR ID:
10213668
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
11
ISSN:
2072-4292
Page Range / eLocation ID:
1865
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 m floodwater depth maps, even when shown as 2D images, can provide more details about floodwater distribution, while 3D visualizations can demonstrate floodwater depth more clearly in relative to the terrain and provide a more direct perception of the inundation situations caused by hurricanes. The use of 3D visualization can help users clearly see floodwaters occurring over various types of terrain conditions, thus identifying a hazardous flood from non-hazardous flood types. Furthermore, 3D maps displaying floodwater depth may provide additional information for rescue efforts and damage assessments. The downscaling model can help enhance the capabilities of moderate-to-coarse resolution sensors, such as those used in operational weather satellites, flood detection and monitoring. 
    more » « less
  2. null (Ed.)
    Since 2 June 2020, unusual heavy and continuous rainfall from the Asian summer monsoon rainy season caused widespread catastrophic floods in many Asian countries, including primarily the two most populated countries, China and India. To detect and monitor the floods and estimate the potentially affected population, data from sensors aboard the operational polar-orbiting satellites Suomi National Polar-Orbiting Partnership (S-NPP) and National Oceanic and Atmospheric Administration (NOAA)-20 were used. The Visible Infrared Imaging Radiometer Suite (VIIRS) with a spatial resolution of 375 m available twice per day aboard these two satellites can observe floodwaters over large spatial regions. The flood maps derived from the VIIRS imagery provide a big picture over the entire flooding regions, and demonstrate that, in July, in China, floods mainly occurred across the Yangtze River, Hui River and their tributaries. The VIIRS 5-day composite flood maps, along with a population density dataset, were combined to estimate the population potentially exposed (PPE) to flooding. We report here on the procedure to combine such data using the Zonal Statistic Function from the ArcGIS Spatial Analyst toolbox. Based on the flood extend for July 2020 along with the population density dataset, the Jiangxi and Anhui provinces were the most affected regions with more than 10 million people in Jingdezhen and Shangrao in Jiangxi province, and Fuyang and Luan in Anhui province, and it is estimated that about 55 million people in China might have been affected by the floodwaters. In addition to China, several other countries, including India, Bangladesh, and Myanmar, were also severely impacted. In India, the worst inundated states include Utter Pradesh, Bihar, Assam, and West Bengal, and it is estimated that about 40 million people might have been affected by severe floods, mainly in the northern states of Bihar, Assam, and West Bengal. The most affected country was Bangladesh, where one third of the country was underwater, and the estimated population potentially exposed to floods is about 30 million in Bangladesh. 
    more » « less
  3. null (Ed.)
    Abstract. Environmental science is increasingly reliant on remotely sensedobservations of the Earth's surface and atmosphere. Observations frompolar-orbiting satellites have long supported investigations on land coverchange, ecosystem productivity, hydrology, climate, the impacts ofdisturbance, and more and are critical for extrapolating (upscaling)ground-based measurements to larger areas. However, the limited temporalfrequency at which polar-orbiting satellites observe the Earth limits ourunderstanding of rapidly evolving ecosystem processes, especially in areaswith frequent cloud cover. Geostationary satellites have observed theEarth's surface and atmosphere at high temporal frequency for decades, andtheir imagers now have spectral resolutions in the visible and near-infrared regions that are comparable to commonly used polar-orbiting sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), or Landsat. These advances extend applications of geostationary Earth observations from weather monitoring to multiple disciplines in ecology and environmental science. We review a number of existing applications that use data from geostationary platforms and present upcoming opportunities for observing key ecosystem properties using high-frequency observations from the Advanced Baseline Imagers (ABI) on the Geostationary Operational Environmental Satellites (GOES), which routinely observe the Western Hemisphere every 5–15 min. Many of the existing applications in environmental science from ABI are focused on estimating land surface temperature, solar radiation, evapotranspiration, and biomass burning emissions along with detecting rapid drought development and wildfire. Ongoing work in estimating vegetation properties and phenology from other geostationary platforms demonstrates the potential to expand ABI observations to estimate vegetation greenness, moisture, and productivity at a high temporal frequency across the Western Hemisphere. Finally, we present emerging opportunities to address the relatively coarseresolution of ABI observations through multisensor fusion to resolvelandscape heterogeneity and to leverage observations from ABI to study thecarbon cycle and ecosystem function at unprecedented temporal frequency. 
    more » « less
  4. Abstract

    The terrestrial carbon cycle varies dynamically on hourly to weekly scales, making it difficult to observe. Geostationary (“weather”) satellites like the Geostationary Environmental Operational Satellite - R Series (GOES-R) deliver near-hemispheric imagery at a ten-minute cadence. The Advanced Baseline Imager (ABI) aboard GOES-R measures visible and near-infrared spectral bands that can be used to estimate land surface properties and carbon dioxide flux. However, GOES-R data are designed for real-time dissemination and are difficult to link with eddy covariance time series of land-atmosphere carbon dioxide exchange. We compiled three-year time series of GOES-R land surface attributes including visible and near-infrared reflectances, land surface temperature (LST), and downwelling shortwave radiation (DSR) at 314 ABI fixed grid pixels containing eddy covariance towers. We demonstrate how to best combine satellite andin-situdatasets and show how ABI attributes useful for ecosystem monitoring vary across space and time. By connecting observation networks that infer rapid changes to the carbon cycle, we can gain a richer understanding of the processes that control it.

     
    more » « less
  5. null (Ed.)
    Abstract. We trained two Random Forest (RF) machine learning models for cloud mask andcloud thermodynamic-phase detection using spectral observations from Visible InfraredImaging Radiometer Suite (VIIRS)on board Suomi National Polar-orbiting Partnership (SNPP). Observations from Cloud-Aerosol Lidarwith Orthogonal Polarization (CALIOP) were carefully selected toprovide reference labels. The two RF models were trained for all-day anddaytime-only conditions using a 4-year collocated VIIRS and CALIOP dataset from2013 to 2016. Due to the orbit difference, the collocated CALIOP and SNPPVIIRS training samples cover a broad-viewing zenith angle range, which is agreat benefit to overall model performance. The all-day model uses three VIIRSinfrared (IR) bands (8.6, 11, and 12 µm), and the daytime model uses fiveNear-IR (NIR) and Shortwave-IR (SWIR) bands (0.86, 1.24, 1.38, 1.64, and 2.25 µm) together with the three IR bands to detect clear, liquid water, and icecloud pixels. Up to seven surface types, i.e., ocean water, forest, cropland,grassland, snow and ice, barren desert, and shrubland, were consideredseparately to enhance performance for both models. Detection of cloudypixels and thermodynamic phase with the two RF models was compared againstcollocated CALIOP products from 2017. It is shown that, when using a conservativescreening process that excludes the most challenging cloudy pixels forpassive remote sensing, the two RF models have high accuracy rates incomparison to the CALIOP reference for both cloud detection andthermodynamic phase. Other existing SNPP VIIRS and Aqua MODIS cloud mask andphase products are also evaluated, with results showing that the two RFmodels and the MODIS MYD06 optical property phase product are the top threealgorithms with respect to lidar observations during the daytime. During thenighttime, the RF all-day model works best for both cloud detection andphase, particularly for pixels over snow and ice surfaces. The present RFmodels can be extended to other similar passive instruments if trainingsamples can be collected from CALIOP or other lidars. However, the qualityof reference labels and potential sampling issues that may impact modelperformance would need further attention. 
    more » « less