skip to main content

Title: Epidemiological and Economic Impact of COVID-19 in the US
This research measures the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising of non-pharmaceutical interventions. A detailed disease model of COVID-19 is combined with a model of the US economy to estimate the direct impact of labor supply shock to each sector arising from morbidity, mortality, and lockdown, as well as the indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of jobs that are workable from home in each sector are used to modify the shock to labor supply. Results show trade-o s between economic losses, and lives saved and infections averted are non-linear in compliance to social distancing and the duration of lockdown. Sectors that are worst hit are not the labor-intensive sectors such as Agriculture and Construction, but the ones with high valued jobs such as Professional Services, even after the teleworkability of jobs is accounted for. Additionally, the findings show that a low compliance to interventions can be overcome by a longer shutdown period and vice versa to arrive at similar epidemiological impact but their net effect on economic loss depends on the interplay between the marginal gains from averting infections and deaths, versus the marginal loss from more » having healthy workers stay at home during the shutdown. « less
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1918656 1633028 1443054 1916805
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. The sudden outbreak of the COVID-19 pandemic has brought drastic changes to people’s daily lives, work, and the surrounding environment. Investigations into these changes are very important for decision makers to implement policies on economic loss assessments and stimulation packages, city reopening, resilience of the environment, and arrangement of medical resources. In order to analyze the impact of COVID-19 on people’s lives, activities, and the natural environment, this paper investigates the spatial and temporal characteristics of Nighttime Light (NTL) radiance and Air Quality Index (AQI) before and during the pandemic in mainland China. The monthly mean NTL radiance, and dailymore »and monthly mean AQI are calculated over mainland China and compared before and during the pandemic. Our results show that the monthly average NTL brightness is much lower during the quarantine period than before. This study categorizes NTL into three classes: residential area, transportation, and public facilities and commercial centers, with NTL radiance ranges of 5–20, 20–40 and greater than 40 (nW· cm − 2 · sr − 1 ), respectively. We found that the Number of Pixels (NOP) with NTL detection increased in the residential area and decreased in the commercial centers for most of the provinces after the shutdown, while transportation and public facilities generally stayed the same. More specifically, we examined these factors in Wuhan, where the first confirmed cases were reported, and where the earliest quarantine measures were taken. Observations and analysis of pixels associated with commercial centers were observed to have lower NTL radiance values, indicating a dimming behavior, while residential area pixels recorded increased levels of brightness after the beginning of the lockdown. The study also discovered a significant decreasing trend in the daily average AQI for mainland China from January to March 2020, with cleaner air in most provinces during February and March, compared to January 2020. In conclusion, the outbreak and spread of COVID-19 has had a crucial impact on people’s daily lives and activity ranges through the increased implementation of lockdown and quarantine policies. On the other hand, the air quality of mainland China has improved with the reduction in non-essential industries and motor vehicle usage. This evidence demonstrates that the Chinese government has executed very stringent quarantine policies to deal with the pandemic. The decisive response to control the spread of COVID-19 provides a reference for other parts of the world.« less
  2. Background: A key challenge in estimating epidemiological parameters for a pandemic such as the initial COVID-19 outbreak in Wuhan is the discrepancy between the officially reported number of infections and the true number of infections. A common approach to tackling the challenge is to use the number of infections exported from the originating city to infer the true number. This approach can only provide a static estimate of the epidemiological parameters before city lockdown because there are almost no exported cases thereafter.Methods: We propose a Bayesian estimation method that dynamically estimates the epidemiological parameters by recovering true numbers of infectionsmore »from day-to-day official numbers. To illustrate the use of this method, we provide a comprehensive retrospection on how the COVID-19 had progressed in Wuhan from January 19 to March 5, 2020. Particularly, we estimate that the outbreak sizes by January 23 and March 5 were 11,239 [95% CI 4,794–22,372] and 124,506 [95% CI 69,526–265,113], respectively.Results: The effective reproduction number attained its maximum on January 24 (3.42 [95% CI 3.34–3.50]) and became less than 1 from February 7 (0.76 [95% CI 0.65–0.92]). We also estimate the effects of two major government interventions on the spread of COVID-19 in Wuhan.Conclusions: This case study by our proposed method affirms the believed importance and effectiveness of imposing tight non-essential travel restrictions and affirm the importance and effectiveness of government interventions (e.g., transportation suspension and large scale hospitalization) for effective mitigation of COVID-19 community spread.« less
  3. Abstract We use an individual based model and national level epidemic simulations to estimate the medical costs of keeping the US economy open during COVID-19 pandemic under different counterfactual scenarios. We model an unmitigated scenario and 12 mitigation scenarios which differ in compliance behavior to social distancing strategies and in the duration of the stay-home order. Under each scenario we estimate the number of people who are likely to get infected and require medical attention, hospitalization, and ventilators. Given the per capita medical cost for each of these health states, we compute the total medical costs for each scenario andmore »show the tradeoffs between deaths, costs, infections, compliance and the duration of stay-home order. We also consider the hospital bed capacity of each Hospital Referral Region (HRR) in the US to estimate the deficit in beds each HRR will likely encounter given the demand for hospital beds. We consider a case where HRRs share hospital beds among the neighboring HRRs during a surge in demand beyond the available beds and the impact it has in controlling additional deaths.« less
  4. The outbreak and emergence of the novel coronavirus (COVID-19) pandemic affected every aspect of human activity, especially the transportation sector. Many cities adopted unprecedented lockdown strategies that resulted in significant nonessential mobility restrictions; hence, transportation network companies (TNCs) have experienced major shifts in their operation. Millions of people alone in the USA have filed for unemployment in the early stage of the COVID-19 outbreak, many belonging to self-employed groups such as Uber/Lyft drivers. Due to unprecedented scenarios, both drivers and passengers experienced overwhelming challenges that might elongate the recovery process. The goal of this study is to understand the risk,more »response, and challenges associated with ridesharing (TNCs, drivers, and passengers) during the COVID-19 pandemic situation. As such, large-scale crowdsourced data were collected from online ridesharing forums (i.e., Uber Drivers) since the emergence of COVID-19 (January 25–May 10, 2020). Word bigrams, word frequency heatmaps, and topic models are among the different natural language processing and text-mining techniques used to preprocess the data and classify risk perception, risk-taking, or risk-averting behaviors associated with ridesharing during a major disease outbreak. Results indicate higher levels of concern about economic disruption, availability of stimulus checks, new employment opportunities, hospitalization, pandemic, personal hygiene, and staying at home. In addition, unprecedented challenges due to unemployment and the risk and uncertainties in the required personal protective actions against spreading the disease due to sharing are among the major interactions. The proposed text-based data analytics of the ridesharing risk communication dynamics during this pandemic will help to identify unobserved factors inadvertently affecting the TNCs as well as the users (drivers and passengers) and identify more efficient strategies and alternatives for the forthcoming “new normal” of the current pandemic and the ones in the future. The study will also guide us toward understanding how efficiently online social interaction outlets can be designed and implemented more effectively during a major crisis and how to leverage such platforms for providing guidelines during emergencies to minimize transmission of disease due to shared travel.« less
  5. Eberly, Jan ; Romer, David (Ed.)
    In the spring of 2020, the initial surge of COVID-19 infections and deaths was flattened using a combination of economic shutdowns and noneconomic non-pharmaceutical interventions (NPIs). The possibility of a second wave of infections and deaths raises the question of what interventions can be used to significantly reduce deaths while supporting, not preventing, economic recovery. We use a five-age epidemiological model combined with sixty-six-sector economic accounting to examine policies to avert and to respond to a second wave. We find that a second round of economic shutdowns alone are neither sufficient nor necessary to avert or quell a second wave.more »In contrast, noneconomic NPIs, such as wearing masks and personal distancing, increasing testing and quarantine, reintroducing restrictions on social and recreational gatherings, and enhancing protections for the elderly together can mitigate a second wave while leaving room for an economic recovery.« less