skip to main content


Title: Intraspecific variation and energy channel coupling within a Chilean kelp forest
The widespread importance of variable types of primary production, or energy channels, to consumer communities has become increasingly apparent. However, the mechanisms underlying this “multichannel” feeding remain poorly understood, especially for aquatic ecosystems that pose unique logistical constraints given the diversity of potential energy channels. Here, we use bulk tissue isotopic analysis along with carbon isotope (δ13C) analysis of individual amino acids to characterize the relative contribution of pelagic and benthic energy sources to a kelp forest consumer community in northern Chile. We measured bulk tissue δ13C and δ15N for >120 samples; of these we analyzed δ13C values of six essential amino acids (EAA) from nine primary producer groups (n = 41) and 11 representative nearshore consumer taxa (n = 56). Using EAA δ13C data, we employed linear discriminant analysis (LDA) to assess how distinct EAA δ13C values were between local pelagic (phytoplankton/particulate organic matter), and benthic (kelps, red algae, and green algae) endmembers. With this model, we were able to correctly classify nearly 90% of producer samples to their original groupings, a significant improvement on traditional bulk isotopic analysis. With this EAA isotopic library, we then generated probability distributions for the most important sources of production for each individual consumer and species using a bootstrap‐resampling LDA approach. We found evidence for multichannel feeding within the community at the species level. Invertebrates tended to focus on either pelagic or benthic energy, deriving 13–67% of their EAA from pelagic sources. In contrast, mobile (fish) taxa at higher trophic levels used more equal proportions of each channel, ranging from 19% to 47% pelagically derived energy. Within a taxon, multichannel feeding was a result of specialization among individuals in energy channel usage, with 37 of 56 individual consumers estimated to derive >80% of their EAA from a single channel. Our study reveals how a cutting‐edge isotopic technique can characterize the dynamics of energy flow in coastal food webs, a topic that has historically been difficult to address. More broadly, our work provides a mechanism as to how multichannel feeding may occur in nearshore communities, and we suggest this pattern be investigated in additional ecosystems.  more » « less
Award ID(s):
1907163
NSF-PAR ID:
10213767
Author(s) / Creator(s):
; ; ;
Editor(s):
Winemiller, KO.
Date Published:
Journal Name:
Ecology
Volume:
102
Issue:
1
ISSN:
1939-9170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Animals often consume resources from multiple energy channels, thereby connecting food webs and driving trophic structure. Such ‘multichannel feeding’ can dictate ecosystem function and stability, but tools to quantify this process are lacking. Stable isotope ‘fingerprints’ are unique patterns in essential amino acid (EAA) δ13C values that vary consistently between energy channels like primary production and detritus, and they have emerged as a tool to trace energy flow in wild systems. Because animals cannot synthesize EAAs de novo and must acquire them from dietary proteins, ecologists often assume δ13C fingerprints travel through food webs unaltered. Numerous studies have used this approach to quantify energy flow and multichannel feeding in animals, but δ13C fingerprinting has never been experimentally tested in a vertebrate consumer.

    We tested the efficacy of δ13C fingerprinting using captive deer micePeromyscus maniculatusraised on diets containing bacterial, fungal and plant protein, as well as a combination of all three sources. We measured the transfer of δ13C fingerprints from diet to consumer liver, muscle and bone collagen, and we used linear discriminant analysis (LDA) and isotopic mixing models to estimate dietary proportions compared to known contributions. Lastly, we tested the use of published δ13C source fingerprints previously used to estimate energy flow and multichannel feeding by consumers.

    We found that EAA δ13C values exhibit significant isotopic (i.e. trophic) fractionation between consumer tissues and diets. Nevertheless, LDA revealed that δ13C fingerprints are consistently routed and assimilated into consumer tissues, regardless of isotopic incorporation rate. Isotopic mixing models accurately estimated the proportional diets of consumers, but all models overestimated plant‐based protein contributions, likely due to the digestive efficiencies of protein sources. Lastly, we found that δ13C source fingerprints from published literature can lead to erroneous diet reconstruction.

    We show that δ13C fingerprints accurately measure energy flow to vertebrate consumers across tissues with different isotopic incorporation rates, thereby enabling the estimation of multichannel feeding at various temporal scales. Our findings illustrate the power of δ13C fingerprinting for quantifying food web dynamics, but also reveal that careful selection of dietary source data is critical to the accuracy of this emerging technique.

     
    more » « less
  2. Abstract

    Food web ecology has revolutionized our understanding of ecological processes, but the drivers of food web properties like trophic position (TP) and food chain length are notoriously enigmatic. In terrestrial ecosystems, above‐ and belowground systems were historically compartmentalized into “green” and “brown” food webs, but the coupling of these systems by animal consumers is increasingly recognized, with potential consequences for trophic structure. We used stable isotope analysis (δ13C, δ15N) of individual amino acids to trace the flow of essential biomolecules and jointly measure multichannel feeding, food web coupling, and TP in a guild of small mammals. We then tested the hypothesis that brown energy fluxes to aboveground consumers increase terrestrial food chain length via cryptic trophic transfers during microbial decomposition. We found that the average small mammal consumer acquired nearly 70% of their essential amino acids (69.0% ± 7.6%) from brown food webs, leading to significant increases in TP across species and functional groups. Fungi were the primary conduit of brown energy to aboveground consumers, providing nearly half the amino acid budget for small mammals on average (44.3% ± 12.0%). These findings illustrate the tightly coupled nature of green and brown food webs and show that microbially mediated energy flow ultimately regulates food web structure in aboveground consumers. Consequently, we propose that the integration of green and brown energy channels is a cryptic driver of food chain length in terrestrial ecosystems.

     
    more » « less
  3. Abstract

    Our project sought to determine ecological effects of adding low‐head dams and levees to large rivers by examining potential changes to aquatic food webs over a 70‐year period in the Lower Ohio River (LOR) and Upper Mississippi River (UMR).

    We employed museum collections of fish and compound specific stable isotope analysis of amino acids to evaluate long‐term changes in primary food sources for multiple species of fish in each river.

    Fishes in both rivers depended more on autochthonous than allochthonous carbon sources throughout the 70‐year period (based on measurements of isotopic signatures of algae, C3plants, C4plants, cyanobacteria, and fungi), but the relative use of different carbon sources differed between the UMR and LOR. Significant but opposite shifts in trophic positions (TP) between rivers over time (higher TP in the UMR; lower in the LOR) were correlated with major anthropogenic changes to habitat structure (e.g. slight decrease in abundance of side channels in the UMR; increase in pool water depth in the LOR) resulting from low‐head dam construction. They may also have been influenced by likely increased primary productivity in the UMR from agricultural nitrogen inputs and by possible shifts in the importance of phytoplankton versus benthic algae in the LOR from changes in water depth. Shifts in trophic position and reliance on various food sources were not correlated with variation in discharge, gage height, or temperature.

    Although these two rivers have contrasting hydrogeomorphic complexity (UMR is an anastomosing river, while the LOR is a constricted channel river) and different discharge patterns (seasonal versus yearly operation in some cases), both differ substantially from rivers having hydrogeomorphic changes resulting from construction of high dams (>15 m). It is not surprising, therefore, that factors controlling trophic position and reliance on different carbon sources vary among different types of dams and river structures.

     
    more » « less
  4. Abstract

    Eukaryotic microalgae play critical roles in the structure and function of marine food webs. The contribution of microalgae to food webs can be tracked using compound‐specific isotope analysis of amino acids (CSIA‐AA). Previous CSIA‐AA studies have defined eukaryotic microalgae as a single functional group in food web mixing models, despite their vast taxonomic and ecological diversity. Using controlled cultures, this work characterizes the amino acidδ13C (δ13CAA) fingerprints—a multivariate metric of amino acid carbon isotope values—of four major groups of eukaryotic microalgae: diatoms, dinoflagellates, raphidophytes, and prasinophytes. We found excellent separation of essential amino acidδ13C (δ13CEAA) fingerprints among four microalgal groups (mean posterior probability reclassification of 99.2 ± 2.9%). We also quantified temperature effects, a primary driver of microalgal bulk carbon isotope variability, on the fidelity ofδ13CAAfingerprints. A 10°C range in temperature conditions did not have significant impacts on variance inδ13CAAvalues or the diagnostic microalgalδ13CEAAfingerprints. Theseδ13CEAAfingerprints were used to identify primary producers at the base of food webs supporting consumers in two contrasting systems: (1) penguins feeding in a diatom‐based food web and (2) mixotrophic corals receiving amino acids directly from autotrophic endosymbiotic dinoflagellates and indirectly from water column diatoms, prasinophytes, and cyanobacteria, likely via heterotrophic feeding on zooplankton. The increased taxonomic specificity of CSIA‐AA fingerprints developed here will greatly improve future efforts to reconstruct the contribution of diverse eukaryotic microalgae to the sources and cycling of organic matter in food web dynamics and biogeochemical cycling studies.

     
    more » « less
  5. null (Ed.)
    Characterizing energy flow and trophic linkages is fundamental to understanding the functioning and resilience of Arctic ecosystems under increasing pressure from climate change and anthropogenic exploitation. We used carbon and nitrogen stable isotopes to examine trophic dynamics and the relative contribution of terrestrial organic matter, water column phytoplankton, and phytobenthos (benthic micro- and macro-autotrophs as well as sea ice algae) to the food webs supporting 45 macroconsumers in three Arctic coastal lagoon ecosystems (Krusenstern, Sisualik, Akulaaq) and the adjacent Kotzebue Sound with varying degrees of connectivity in Cape Krusenstern National Monument, Alaska. A two-source (water column particulate organic matter and benthic sediment organic matter), two-isotope trophic dynamics model informed by a Bayesian isotope mixing model revealed that the Lagoon-Kotzebue Sound coastal ecosystem supported consumers along a trophic position continuum from primary consumers, including amphipods, copepods, and clams to trophic level five predators, such as seastars, piscivorous fishes, seals, and seabirds. The relative contribution of the three primary producer end members, terrestrial organic matter (41 ± 21%), phytoplankton (25 ± 21%), and phytobenthos (34 ± 23%) varied as a function of: 1) consumer foraging ecology and 2) consumer location. Suspension feeders received most of their carbon from food webs based on phytoplankton (49 ± 11%) and terrestrial organic matter (23 ± 5%), whereas herbivores and detritivores received the majority of their carbon from phytobenthos-based food webs, 58 ± 10% and 60 ± 8%, respectively. Omnivores and predators showed more even distributions of resource reliance and greater overall variance among species. Within the invertebrates, the importance of terrestrial organic matter decreased and phytobenthos increased with increasing trophic position. The importance of terrestrial organic matter contribution increased with lagoon proximity to major rivers inputs and isolation from Kotzebue Sound. Several taxa with cultural and subsistence food importance to local communities showed significant reliance (30–90% of baseline carbon) on food chains linked to fresh terrestrial organic matter. Our study indicates that terrestrial-marine linkages are important to the function of Arctic coastal lagoon ecosystems and artisanal fisheries. These linkages are likely to strengthen in the future with regional changes in erosion and runoff associated with climate change and anthropogenic disturbance. 
    more » « less