skip to main content

Title: Intraspecific variation and energy channel coupling within a Chilean kelp forest
The widespread importance of variable types of primary production, or energy channels, to consumer communities has become increasingly apparent. However, the mechanisms underlying this “multichannel” feeding remain poorly understood, especially for aquatic ecosystems that pose unique logistical constraints given the diversity of potential energy channels. Here, we use bulk tissue isotopic analysis along with carbon isotope (δ13C) analysis of individual amino acids to characterize the relative contribution of pelagic and benthic energy sources to a kelp forest consumer community in northern Chile. We measured bulk tissue δ13C and δ15N for >120 samples; of these we analyzed δ13C values of six essential amino acids (EAA) from nine primary producer groups (n = 41) and 11 representative nearshore consumer taxa (n = 56). Using EAA δ13C data, we employed linear discriminant analysis (LDA) to assess how distinct EAA δ13C values were between local pelagic (phytoplankton/particulate organic matter), and benthic (kelps, red algae, and green algae) endmembers. With this model, we were able to correctly classify nearly 90% of producer samples to their original groupings, a significant improvement on traditional bulk isotopic analysis. With this EAA isotopic library, we then generated probability distributions for the most important sources of production for each individual more » consumer and species using a bootstrap‐resampling LDA approach. We found evidence for multichannel feeding within the community at the species level. Invertebrates tended to focus on either pelagic or benthic energy, deriving 13–67% of their EAA from pelagic sources. In contrast, mobile (fish) taxa at higher trophic levels used more equal proportions of each channel, ranging from 19% to 47% pelagically derived energy. Within a taxon, multichannel feeding was a result of specialization among individuals in energy channel usage, with 37 of 56 individual consumers estimated to derive >80% of their EAA from a single channel. Our study reveals how a cutting‐edge isotopic technique can characterize the dynamics of energy flow in coastal food webs, a topic that has historically been difficult to address. More broadly, our work provides a mechanism as to how multichannel feeding may occur in nearshore communities, and we suggest this pattern be investigated in additional ecosystems. « less
; ; ;
Winemiller, KO.
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Characterizing energy flow and trophic linkages is fundamental to understanding the functioning and resilience of Arctic ecosystems under increasing pressure from climate change and anthropogenic exploitation. We used carbon and nitrogen stable isotopes to examine trophic dynamics and the relative contribution of terrestrial organic matter, water column phytoplankton, and phytobenthos (benthic micro- and macro-autotrophs as well as sea ice algae) to the food webs supporting 45 macroconsumers in three Arctic coastal lagoon ecosystems (Krusenstern, Sisualik, Akulaaq) and the adjacent Kotzebue Sound with varying degrees of connectivity in Cape Krusenstern National Monument, Alaska. A two-source (water column particulate organic matter andmore »benthic sediment organic matter), two-isotope trophic dynamics model informed by a Bayesian isotope mixing model revealed that the Lagoon-Kotzebue Sound coastal ecosystem supported consumers along a trophic position continuum from primary consumers, including amphipods, copepods, and clams to trophic level five predators, such as seastars, piscivorous fishes, seals, and seabirds. The relative contribution of the three primary producer end members, terrestrial organic matter (41 ± 21%), phytoplankton (25 ± 21%), and phytobenthos (34 ± 23%) varied as a function of: 1) consumer foraging ecology and 2) consumer location. Suspension feeders received most of their carbon from food webs based on phytoplankton (49 ± 11%) and terrestrial organic matter (23 ± 5%), whereas herbivores and detritivores received the majority of their carbon from phytobenthos-based food webs, 58 ± 10% and 60 ± 8%, respectively. Omnivores and predators showed more even distributions of resource reliance and greater overall variance among species. Within the invertebrates, the importance of terrestrial organic matter decreased and phytobenthos increased with increasing trophic position. The importance of terrestrial organic matter contribution increased with lagoon proximity to major rivers inputs and isolation from Kotzebue Sound. Several taxa with cultural and subsistence food importance to local communities showed significant reliance (30–90% of baseline carbon) on food chains linked to fresh terrestrial organic matter. Our study indicates that terrestrial-marine linkages are important to the function of Arctic coastal lagoon ecosystems and artisanal fisheries. These linkages are likely to strengthen in the future with regional changes in erosion and runoff associated with climate change and anthropogenic disturbance.« less
  2. Abstract

    Rainfall mobilizes and transports anthropogenic sources of sediments and nutrients from terrestrial to coastal marine ecosystems, and episodic but extreme rainfall may drive high fluxes to marine communities. Between January 13thand January 22nd, 2017, the South Pacific Island of Moorea, French Polynesia experienced an extreme rainfall event. ~57 cm of rain was delivered over a 10-day storm. We quantified pulsed sediments and nutrients transported to nearshore reefs. We determined the spatial and temporal extent of the sediment pulse with estimates of water transparency. We quantified pulsed nutrients at multiple spatial and temporal scales. To determine if terrestrial nutrients were incorporatedmore »into the benthic community, we collected macroalgae over 10 days following the storm and measured tissue nutrient concentrations and δN15. Pulsed sediments impacted water clarity for 6 days following the storm, with greatest impacts closest to the river mouth. Nitrite +nitrate concentrations were >100 times the average while phosphate was >25 times average. Macroalgal tissue nutrients were elevated, and δN15implicates sewage as the source, demonstrating transported nutrients were transferred to producer communities. Future climate change predictions suggest extreme rainfall will become more common in this system, necessitating research on these pulses and their ramifications on marine communities.

    « less
  3. Coral reef ecosystems are incredibly diverse marine biomes that rely on nutrient cycling by microorganisms to sustain high productivity in generally oligotrophic regions of the ocean. Understanding the composition of extracellular reef metabolites in seawater, the small organic molecules that serve as the currency for microorganisms, may provide insight into benthic-pelagic coupling as well as the complexity of nutrient cycling in coral reef ecosystems. Jardines de la Reina (JR), Cuba is an ideal environment to examine extracellular metabolites across protected and high-quality reefs. Here, we used liquid chromatography mass spectrometry (LC-MS) to quantify specific known metabolites of interest (targeted metabolomicsmore »approach) and to survey trends in metabolite feature composition (untargeted metabolomics approach) from surface and reef depth (6 – 14 m) seawater overlying nine forereef sites in JR. We found that untargeted metabolite feature composition was surprisingly similar between reef depth and surface seawater, corresponding with other biogeochemical and physicochemical measurements and suggesting that environmental conditions were largely homogenous across forereefs within JR. Additionally, we quantified 32 of 53 detected metabolites using the targeted approach, including amino acids, nucleosides, vitamins, and other metabolic intermediates. Two of the quantified metabolites, riboflavin and xanthosine, displayed interesting trends by depth. Riboflavin concentrations were higher in reef depth compared to surface seawater, suggesting that riboflavin may be produced by reef organisms at depth and degraded in the surface through photochemical oxidation. Xanthosine concentrations were significantly higher in surface reef seawater. 5′-methylthioadenosine (MTA) concentrations increased significantly within the central region of the archipelago, displaying biogeographic patterns that warrant further investigation. Here we lay the groundwork for future investigations of variations in metabolite composition across reefs, sources and sinks of reef metabolites, and changes in metabolites over environmental, temporal, and reef health gradients.« less
  4. Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30–150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae generamore »at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ 15 N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a , lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial.« less
  5. We investigated the response of an open-ocean plankton food web to a major ecosystem perturbation event, the Hawaiian lee cyclonic eddy Opal, using compound-specific isotopic analyses of amino acids (CSIA-AA) of individual zooplankton taxa. We hypothesized that the massive diatom bloom that characterized Opal would lead to a shorter food chain. Using CSIA-AA, we differentiated trophic position (TP) changes that arose from altered transfers through protistan microzooplankton, versus metazoan carnivory, and assessed the variability at the base of the food web. Contrary to expectation, zooplankton TPs were higher in the eddy than in ambient control waters (up to 0.8 trophicmore »level), particularly for suspension feeders close to the food-web base. Most of the effect was due to increased trophic transfers through protistan consumers, indicating a general shift up, not down, of grazing and remineralization in the microbial food web. Eucalanus sp., which was 15-fold more abundant inside compared to outside of the eddy, was the only taxon observed to be a true herbivore (TP = 2.0), consistent with a high phenylalanine (Phe) δ 15 N value indicating feeding on nitrate-fueled diatoms in the lower euphotic zone. Oncaea sp., an aggregate-associated copepod, had the largest (1.5) TP difference, and lowest Phe δ 15 N, suggesting that detrital particles were local hot spots of enhanced microbial activity. Rapid growth rates and trophic flexibility of protistan microzooplankton apparently allow the microbial community to reorganize to bloom perturbations, as microzooplankton remain the primary phytoplankton grazers—despite the dominance of large diatoms—and are heavily preyed on by the mesozooplankton.« less