skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Controlling spin current polarization through non-collinear antiferromagnetism
Abstract The interconversion of charge and spin currents via spin-Hall effect is essential for spintronics. Energy-efficient and deterministic switching of magnetization can be achieved when spin polarizations of these spin currents are collinear with the magnetization. However, symmetry conditions generally restrict spin polarizations to be orthogonal to both the charge and spin flows. Spin polarizations can deviate from such direction in nonmagnetic materials only when the crystalline symmetry is reduced. Here, we show control of the spin polarization direction by using a non-collinear antiferromagnet Mn 3 GaN, in which the triangular spin structure creates a low magnetic symmetry while maintaining a high crystalline symmetry. We demonstrate that epitaxial Mn 3 GaN/permalloy heterostructures can generate unconventional spin-orbit torques at room temperature corresponding to out-of-plane and Dresselhaus-like spin polarizations which are forbidden in any sample with two-fold rotational symmetry. Our results demonstrate an approach based on spin-structure design for controlling spin-orbit torque, enabling high-efficient antiferromagnetic spintronics.  more » « less
Award ID(s):
1720415 1708499
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spin–orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy‐efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in‐plane magnetic switching. Unconventional spin–orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic‐based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin–orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin–orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy‐efficient magnetic switching in spintronic devices.

    more » « less
  2. Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5 d -electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO 3 . We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO 3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO 3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO 3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5 d transition-metal oxide thin films can be an ideal building block for low-power spintronics. 
    more » « less
  3. Materials with large spin–orbit interactions generate pure spin currents with spin polarizations parallel to the interfacial surfaces that give rise to conventional spin–orbit torques. These spin–orbit torques can only efficiently and deterministically switch magnets with in-plane magnetization. Additional symmetry breaking, such as in non-collinear antiferromagnets, can generate exotic, unconventional spin–orbit torques that are associated with spin polarizations perpendicular to the interfacial planes. Here, we use micromagnetic simulations to investigate whether such exotic spin–orbit torques can generate magnetic droplet solitions in out-of-plane magnetized geometries. We show that a short, high current pulse followed by a lower constant current can nucleate and stabilize magnetic droplets. Through specific current pulse lengths, it is possible to control the number of droplets in such a system, since torques are generated over a large area. Additionally, the nucleation current scales with the out-of-plane component of the spin polarization and is linear as a function of magnetic field strength. 
    more » « less
  4. Abstract

    Spin-orbit torques (SOT) enable efficient electrical control of the magnetic state of ferromagnets, ferrimagnets and antiferromagnets. However, the conventional SOT has severe limitation that only in-plane spins accumulate near the surface, whether interpreted as a spin Hall effect (SHE) or as an Edelstein effect. Such a SOT is not suitable for controlling perpendicular magnetization, which would be more beneficial for realizing low-power-consumption memory devices. Here we report the observation of a giant magnetic-field-like SOT in a topological antiferromagnet Mn3Sn, whose direction and size can be tuned by changing the order parameter direction of the antiferromagnet. To understand the magnetic SHE (MSHE)- and the conventional SHE-induced SOTs on an equal footing, we formulate them as interface spin-electric-field responses and analyzed using a macroscopic symmetry analysis and a complementary microscopic quantum kinetic theory. In this framework, the large out-of-plane spin accumulation due to the MSHE has an inter-band origin and is likely to be caused by the large momentum-dependent spin splitting in Mn3Sn. Our work demonstrates the unique potential of antiferromagnetic Weyl semimetals in overcoming the limitations of conventional SOTs and in realizing low-power spintronics devices with new functionalities.

    more » « less
  5. Abstract

    One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, thez-axis) with frequencyω0due to absorption of low-power microwaves of frequencyω0under the resonance conditions and in the absence of any applied bias voltage. The two-decades-old ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that componentISzof spin current vector(ISx(t),ISy(t),ISz)ω0is time-independent whileISx(t)andISy(t)oscillate harmonically in time with a single frequencyω0whereas pumped charge current is zeroI0in the same adiabaticω0limit. Here we employ more general approaches than the ‘standard model’, namely the time-dependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spinISα(t)and chargeI(t) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiplesNω0of the driving frequencyω0. The cutoff order of such high harmonics increases with SOC strength, reachingNmax11in the one-dimensional FM or AFM models chosen for demonstration. A higher cutoffNmax25can be achieved in realistic two-dimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures.

    more » « less