skip to main content


Title: Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet
Abstract

Spin-orbit torques (SOT) enable efficient electrical control of the magnetic state of ferromagnets, ferrimagnets and antiferromagnets. However, the conventional SOT has severe limitation that only in-plane spins accumulate near the surface, whether interpreted as a spin Hall effect (SHE) or as an Edelstein effect. Such a SOT is not suitable for controlling perpendicular magnetization, which would be more beneficial for realizing low-power-consumption memory devices. Here we report the observation of a giant magnetic-field-like SOT in a topological antiferromagnet Mn3Sn, whose direction and size can be tuned by changing the order parameter direction of the antiferromagnet. To understand the magnetic SHE (MSHE)- and the conventional SHE-induced SOTs on an equal footing, we formulate them as interface spin-electric-field responses and analyzed using a macroscopic symmetry analysis and a complementary microscopic quantum kinetic theory. In this framework, the large out-of-plane spin accumulation due to the MSHE has an inter-band origin and is likely to be caused by the large momentum-dependent spin splitting in Mn3Sn. Our work demonstrates the unique potential of antiferromagnetic Weyl semimetals in overcoming the limitations of conventional SOTs and in realizing low-power spintronics devices with new functionalities.

 
more » « less
Award ID(s):
1945023
NSF-PAR ID:
10305122
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many key electronic technologies (e.g., large‐scale computing, machine learning, and superconducting electronics) require new memories that are at the same time fast, reliable, energy‐efficient, and of low‐impedance, which has remained a challenge. Nonvolatile magnetoresistive random access memories (MRAMs) driven by spin–orbit torques (SOTs) have promise to be faster and more energy‐efficient than conventional semiconductor and spin‐transfer‐torque magnetic memories. It is reported that the spin Hall effect of low‐resistivity Au0.25Pt0.75thin films enables ultrafast antidamping‐torque switching of SOT‐MRAM devices for current pulse widths as short as 200 ps. If combined with industrial‐quality lithography and already‐demonstrated interfacial engineering, an optimized MRAM cell based on Au0.25Pt0.75can have energy‐efficient, ultrafast, and reliable switching, for example, a write energy of <1 fJ (<50 fJ) for write error rate of 50% (<10−5) for 1 ns pulses. The antidamping torque switching of the Au0.25Pt0.75devices is ten times faster than expected from a rigid macrospin model, most likely because of the fast micromagnetics due to the enhanced nonuniformity within the free layer. The feasibility of Au0.25Pt0.75‐based SOT‐MRAMs as a candidate for ultrafast, reliable, energy‐efficient, low‐impedance, and unlimited‐endurance memory is demonstrated.

     
    more » « less
  2. Abstract

    The interfacial Dzyaloshinskii-Moriya interaction (DMI) holds promises for design and control of chiral spin textures in low-dimensional magnets with efficient current-driven dynamics. Recently, an interlayer DMI has been found to exist across magnetic multilayers with a heavy-metal spacer between magnetic layers. This opens the possibility of chirality in these three-dimensional magnetic structures. Here we show the existence of the interlayer DMI in a synthetic antiferromagnetic multilayer with both inversion and in-plane asymmetry. We analyse the interlayer DMI’s effects on the magnetization and the current-induced spin-orbit torque (SOT) switching of magnetization through a combination of experimental and numerical studies. The chiral nature of the interlayer DMI leads to an asymmetric SOT switching of magnetization under an in-plane magnetic field. Our work paves the way for further explorations on controlling chiral magnetizations across magnetic multilayers through SOTs, which can provide a new path in the design of SOT devices.

     
    more » « less
  3. Abstract

    Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii–Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design.

     
    more » « less
  4. Abstract

    Ferrimagnetic materials combine the advantages of the low magnetic moment of an antiferromagnet and the ease of realizing magnetic reading of a ferromagnet. Recently, it was demonstrated that compensated ferrimagnetic half metals can be realized in Heusler alloys, where high spin polarization, zero magnetic moment, and low magnetic damping can be achieved at the same time. In this work, by studying the spin–orbit torque induced switching in the Heusler alloy Mn2Ru1−xGa, it is found that efficient current‐induced magnetic switching can be realized in a nearly compensated sample with strong perpendicular anisotropy and large film thickness. This work demonstrates the possibility of employing compensated Heusler alloys for fast, energy‐efficient spintronic devices.

     
    more » « less
  5. Abstract

    The anomalous Hall effect (AHE), typically observed in ferromagnetic (FM) metals with broken time-reversal symmetry, depends on electronic and magnetic properties. In Co3Sn2-xInxS2, a giant AHE has been attributed to Berry curvature associated with the FM Weyl semimetal phase, yet recent studies report complicated magnetism. We use neutron scattering to determine the spin dynamics and structures as a function ofxand provide a microscopic understanding of the AHE and magnetism interplay. Spin gap and stiffness indicate a contribution from Weyl fermions consistent with the AHE. The magnetic structure evolves fromc-axis ferromagnetism at$$x = 0$$x=0to a canted antiferromagnetic (AFM) structure with reducedc-axis moment and in-plane AFM order at$$x = 0.12$$x=0.12and further reducedc-axis FM moment at$$x = 0.3$$x=0.3. Since noncollinear spins can induce non-zero Berry curvature in real space acting as a fictitious magnetic field, our results revealed another AHE contribution, establishing the impact of magnetism on transport.

     
    more » « less