skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated Detection of Rest Disruptions in Critically Ill Patients
Sleep has been shown to be an indispensable and important component of patients' recovery process. Nonetheless, the sleep quality of patients in the Intensive Care Unit (ICU) is often low, due to factors such as noise, pain, and frequent nursing care activities. Frequent sleep disruptions by the medical staff and/or visitors at certain times might lead to disruption of the patient's sleep-wake cycle and can also impact the severity of pain. Examining the association between sleep quality and frequent visitation has been difficult, due to the lack of automated methods for visitation detection. In this study, we recruited 38 patients to automatically assess visitation frequency from captured video frames. We used the DensePose R-CNN (ResNet-101) model to calculate the number of people in the room in a video frame. We examined when patients are interrupted the most, and we examined the association between frequent disruptions and patient outcomes on pain and length of stay.  more » « less
Award ID(s):
1750192
PAR ID:
10213914
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Page Range / eLocation ID:
5450 to 5454
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Currently, many critical care indices are repetitively assessed and recorded by overburdened nurses, e.g. physical function or facial pain expressions of nonverbal patients. In addition, many essential information on patients and their environment are not captured at all, or are captured in a non-granular manner, e.g. sleep disturbance factors such as bright light, loud background noise, or excessive visitations. In this pilot study, we examined the feasibility of using pervasive sensing technology and artificial intelligence for autonomous and granular monitoring of critically ill patients and their environment in the Intensive Care Unit (ICU). As an exemplar prevalent condition, we also characterized delirious and non-delirious patients and their environment. We used wearable sensors, light and sound sensors, and a high-resolution camera to collected data on patients and their environment. We analyzed collected data using deep learning and statistical analysis. Our system performed face detection, face recognition, facial action unit detection, head pose detection, facial expression recognition, posture recognition, actigraphy analysis, sound pressure and light level detection, and visitation frequency detection. We were able to detect patient's face (Mean average precision (mAP)=0.94), recognize patient's face (mAP=0.80), and their postures (F1=0.94). We also found that all facial expressions, 11 activity features, visitation frequency during the day, visitation frequency during the night, light levels, and sound pressure levels during the night were significantly different between delirious and non-delirious patients (p-value<0.05). In summary, we showed that granular and autonomous monitoring of critically ill patients and their environment is feasible and can be used for characterizing critical care conditions and related environment factors. 
    more » « less
  2. Patients staying in the Intensive Care Unit (ICU) have a severely disrupted circadian rhythm. Due to patients' critical medical condition, ICU physicians and nurses have to provide round-the-clock clinical care, further disrupting patients' circadian rhythm. Mistimed family visits during rest-time can also disrupt patients' circadian rhythm. Currently, such effects are only reported based on hospital visitation policies rather than the actual number of visitors and care providers in the room. To quantify visitation disruptions, we used a deep Mask R-CNN model, a deep learning framework for object instance segmentation to detect and quantify the number of individuals in the ICU unit. This study represents the first effort to automatically quantify visitations in an ICU room, which could have implications in terms of policy adjustment, as well as circadian rhythm investigation. Our model achieved precision of 0.97 and recall of 0.67, with F1 score of 0.79 for detecting disruptions in the ICU units. 
    more » « less
  3. Abstract BackgroundRoughly a quarter of the US population suffers from moderate to severe chronic pain for at least six months in any given year. The complexity of managing chronic pain has encouraged providers to use innovative methods to address it. Research has shown that problem lists are potential tools that support the care of patients with diabetes and chronic kidney disease. ObjectivesTo examine the extent to which the inclusion of chronic pain in a problem list is associated with follow-up specialty pain care. MethodsThe association between chronic pain documentation on the problem list and specialty pain care was investigated in this retrospective cohort study using 4531 patient records. ResultsChronic pain documentation in the problem list was associated with higher odds of receiving specialty pain care. The most common diagnosis was chronic pain (69.7%). A migraine diagnosis was associated with decreased odds of receiving specialty care, and chronic pain syndrome was associated with increased odds of receiving specialty care compared with the other chronic pain groups. ConclusionDocumenting chronic pain on the problem list was associated with a higher likelihood of patients receiving specialty pain care. 
    more » « less
  4. null (Ed.)
    Critical care patients experience varying levels of pain during their stay in the intensive care unit, often requiring administration of analgesics and sedation. Such medications generally exacerbate the already sedentary physical activity profiles of critical care patients, contributing to delayed recovery. Thus, it is important not only to minimize pain levels, but also to optimize analgesic strategies in order to maximize mobility and activity of ICU patients. Currently, we lack an understanding of the relation between pain and physical activity on a granular level. In this study, we examined the relationship between nurse assessed pain scores and physical activity as measured using a wearable accelerometer device. We found that average, standard deviation, and maximum physical activity counts are significantly higher before high pain reports compared to before low pain reports during both daytime and nighttime, while percentage of time spent immobile was not significantly different between the two pain report groups. Clusters detected among patients using extracted physical activity features were significant in adjusted logistic regression analysis for prediction of pain report group. 
    more » « less
  5. null (Ed.)
    Pain and physical function are both essential indices of recovery in critically ill patients in the Intensive Care Units (ICU). Simultaneous monitoring of pain intensity and patient activity can be important for determining which analgesic interventions can optimize mobility and function, while minimizing opioid harm. Nonetheless, so far, our knowledge of the relation between pain and activity has been limited to manual and sporadic activity assessments. In recent years, wearable devices equipped with 3-axis accelerometers have been used in many domains to provide a continuous and automated measure of mobility and physical activity. In this study, we collected activity intensity data from 57 ICU patients, using the Actigraph GT3X device. We also collected relevant clinical information, including nurse assessments of pain intensity, recorded every 1-4 hours. Our results show the joint distribution and state transition of joint activity and pain states in critically ill patients. 
    more » « less