skip to main content


Search for: All records

Award ID contains: 1750192

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Traditional methods for assessing illness severity and predicting in-hospital mortality among critically ill patients require time-consuming, error-prone calculations using static variable thresholds. These methods do not capitalize on the emerging availability of streaming electronic health record data or capture time-sensitive individual physiological patterns, a critical task in the intensive care unit. We propose a novel acuity score framework (DeepSOFA) that leverages temporal measurements and interpretable deep learning models to assess illness severity at any point during an ICU stay. We compare DeepSOFA with SOFA (Sequential Organ Failure Assessment) baseline models using the same model inputs and find that at any point during an ICU admission, DeepSOFA yields significantly more accurate predictions of in-hospital mortality. A DeepSOFA model developed in a public database and validated in a single institutional cohort had a mean AUC for the entire ICU stay of 0.90 (95% CI 0.90–0.91) compared with baseline SOFA models with mean AUC 0.79 (95% CI 0.79–0.80) and 0.85 (95% CI 0.85–0.86). Deep models are well-suited to identify ICU patients in need of life-saving interventions prior to the occurrence of an unexpected adverse event and inform shared decision-making processes among patients, providers, and families regarding goals of care and optimal resource utilization.

     
    more » « less
  2. null (Ed.)
    Background: Post-operative delirium is a common complication among adult patients in the intensive care unit. Current literature does not support the use of pharmacologic measures to manage this condition, and several studies explore the potential for the use of non-pharmacologic methods such as early mobility plans or environmental modifications. The aim of this systematic review is to examine and report on recently available literature evaluating the relationship between non-pharmacologic management strategies and the reduction of delirium in the intensive care unit. Methods: Six major research databases were systematically searched for articles analyzing the efficacy of non-pharmacologic delirium interventions in the past five years. Search results were restricted to adult human patients aged 18 years or older in the intensive care unit setting, excluding terminally ill subjects and withdrawal-related delirium. Following title, abstract, and full text review, 27 articles fulfilled the inclusion criteria and are included in this report. Results: The 27 reviewed articles consist of 12 interventions with a single-component investigational approach, and 15 with multi-component bundled protocols. Delirium incidence was the most commonly assessed outcome followed by duration. Family visitation was the most effective individual intervention while mobility interventions were the least effective. Two of the three family studies significantly reduced delirium incidence, while one in five mobility studies did the same. Multi-component bundle approaches were the most effective of all; of the reviewed studies, eight of 11 bundles significantly improved delirium incidence and seven of eight bundles decreased the duration of delirium. Conclusions: Multi-component, bundled interventions were more effective at managing intensive care unit delirium than those utilizing an approach with a single interventional element. Although better management of this condition suggests a decrease in resource burden and improvement in patient outcomes, comparative research should be performed to identify the importance of specific bundle elements. 
    more » « less
  3. Abstract Accurate prediction of postoperative complications can inform shared decisions regarding prognosis, preoperative risk-reduction, and postoperative resource use. We hypothesized that multi-task deep learning models would outperform conventional machine learning models in predicting postoperative complications, and that integrating high-resolution intraoperative physiological time series would result in more granular and personalized health representations that would improve prognostication compared to preoperative predictions. In a longitudinal cohort study of 56,242 patients undergoing 67,481 inpatient surgical procedures at a university medical center, we compared deep learning models with random forests and XGBoost for predicting nine common postoperative complications using preoperative, intraoperative, and perioperative patient data. Our study indicated several significant results across experimental settings that suggest the utility of deep learning for capturing more precise representations of patient health for augmented surgical decision support. Multi-task learning improved efficiency by reducing computational resources without compromising predictive performance. Integrated gradients interpretability mechanisms identified potentially modifiable risk factors for each complication. Monte Carlo dropout methods provided a quantitative measure of prediction uncertainty that has the potential to enhance clinical trust. Multi-task learning, interpretability mechanisms, and uncertainty metrics demonstrated potential to facilitate effective clinical implementation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Transformer model architectures have revolutionized the natural language processing (NLP) domain and continue to produce state-of-the-art results in text-based applications. Prior to the emergence of transformers, traditional NLP models such as recurrent and convolutional neural networks demonstrated promising utility for patient-level predictions and health forecasting from longitudinal datasets. However, to our knowledge only few studies have explored transformers for predicting clinical outcomes from electronic health record (EHR) data, and in our estimation, none have adequately derived a health-specific tokenization scheme to fully capture the heterogeneity of EHR systems. In this study, we propose a dynamic method for tokenizing both discrete and continuous patient data, and present a transformer-based classifier utilizing a joint embedding space for integrating disparate temporal patient measurements. We demonstrate the feasibility of our clinical AI framework through multi-task ICU patient acuity estimation, where we simultaneously predict six mortality and readmission outcomes. Our longitudinal EHR tokenization and transformer modeling approaches resulted in more accurate predictions compared with baseline machine learning models, which suggest opportunities for future multimodal data integrations and algorithmic support tools using clinical transformer networks. 
    more » « less
  5. Keim-Malpass, Jessica (Ed.)
    During the early stages of hospital admission, clinicians use limited information to make decisions as patient acuity evolves. We hypothesized that clustering analysis of vital signs measured within six hours of hospital admission would reveal distinct patient phenotypes with unique pathophysiological signatures and clinical outcomes. We created a longitudinal electronic health record dataset for 75,762 adult patient admissions to a tertiary care center in 2014–2016 lasting six hours or longer. Physiotypes were derived via unsupervised machine learning in a training cohort of 41,502 patients applying consensus k -means clustering to six vital signs measured within six hours of admission. Reproducibility and correlation with clinical biomarkers and outcomes were assessed in validation cohort of 17,415 patients and testing cohort of 16,845 patients. Training, validation, and testing cohorts had similar age (54–55 years) and sex (55% female), distributions. There were four distinct clusters. Physiotype A had physiologic signals consistent with early vasoplegia, hypothermia, and low-grade inflammation and favorable short-and long-term clinical outcomes despite early, severe illness. Physiotype B exhibited early tachycardia, tachypnea, and hypoxemia followed by the highest incidence of prolonged respiratory insufficiency, sepsis, acute kidney injury, and short- and long-term mortality. Physiotype C had minimal early physiological derangement and favorable clinical outcomes. Physiotype D had the greatest prevalence of chronic cardiovascular and kidney disease, presented with severely elevated blood pressure, and had good short-term outcomes but suffered increased 3-year mortality. Comparing sequential organ failure assessment (SOFA) scores across physiotypes demonstrated that clustering did not simply recapitulate previously established acuity assessments. In a heterogeneous cohort of hospitalized patients, unsupervised machine learning techniques applied to routine, early vital sign data identified physiotypes with unique disease categories and distinct clinical outcomes. This approach has the potential to augment understanding of pathophysiology by distilling thousands of disease states into a few physiological signatures. 
    more » « less
  6. Lai, Yuan (Ed.)
    Mistrust is a major barrier to implementing deep learning in healthcare settings. Entrustment could be earned by conveying model certainty, or the probability that a given model output is accurate, but the use of uncertainty estimation for deep learning entrustment is largely unexplored, and there is no consensus regarding optimal methods for quantifying uncertainty. Our purpose is to critically evaluate methods for quantifying uncertainty in deep learning for healthcare applications and propose a conceptual framework for specifying certainty of deep learning predictions. We searched Embase, MEDLINE, and PubMed databases for articles relevant to study objectives, complying with PRISMA guidelines, rated study quality using validated tools, and extracted data according to modified CHARMS criteria. Among 30 included studies, 24 described medical imaging applications. All imaging model architectures used convolutional neural networks or a variation thereof. The predominant method for quantifying uncertainty was Monte Carlo dropout, producing predictions from multiple networks for which different neurons have dropped out and measuring variance across the distribution of resulting predictions. Conformal prediction offered similar strong performance in estimating uncertainty, along with ease of interpretation and application not only to deep learning but also to other machine learning approaches. Among the six articles describing non-imaging applications, model architectures and uncertainty estimation methods were heterogeneous, but predictive performance was generally strong, and uncertainty estimation was effective in comparing modeling methods. Overall, the use of model learning curves to quantify epistemic uncertainty (attributable to model parameters) was sparse. Heterogeneity in reporting methods precluded the performance of a meta-analysis. Uncertainty estimation methods have the potential to identify rare but important misclassifications made by deep learning models and compare modeling methods, which could build patient and clinician trust in deep learning applications in healthcare. Efficient maturation of this field will require standardized guidelines for reporting performance and uncertainty metrics. 
    more » « less
  7. Patients in critical care settings often require continuous and multifaceted monitoring. However, current clinical monitoring practices fail to capture important functional and behavioral indices such as mobility or agitation. Recent advances in non-invasive sensing technology, high throughput computing, and deep learning techniques are expected to transform the existing patient monitoring paradigm by enabling and streamlining granular and continuous monitoring of these crucial critical care measures. In this review, we highlight current approaches to pervasive sensing in critical care and identify limitations, future challenges, and opportunities in this emerging field. 
    more » « less
  8. Lu, Henry Horng-Shing (Ed.)
    Established guidelines describe minimum requirements for reporting algorithms in healthcare; it is equally important to objectify the characteristics of ideal algorithms that confer maximum potential benefits to patients, clinicians, and investigators. We propose a framework for ideal algorithms, including 6 desiderata: explainable (convey the relative importance of features in determining outputs), dynamic (capture temporal changes in physiologic signals and clinical events), precise (use high-resolution, multimodal data and aptly complex architecture), autonomous (learn with minimal supervision and execute without human input), fair (evaluate and mitigate implicit bias and social inequity), and reproducible (validated externally and prospectively and shared with academic communities). We present an ideal algorithms checklist and apply it to highly cited algorithms. Strategies and tools such as the predictive, descriptive, relevant (PDR) framework, the Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence (SPIRIT-AI) extension, sparse regression methods, and minimizing concept drift can help healthcare algorithms achieve these objectives, toward ideal algorithms in healthcare. 
    more » « less