skip to main content


Title: Automated Detection of Rest Disruptions in Critically Ill Patients
Sleep has been shown to be an indispensable and important component of patients' recovery process. Nonetheless, the sleep quality of patients in the Intensive Care Unit (ICU) is often low, due to factors such as noise, pain, and frequent nursing care activities. Frequent sleep disruptions by the medical staff and/or visitors at certain times might lead to disruption of the patient's sleep-wake cycle and can also impact the severity of pain. Examining the association between sleep quality and frequent visitation has been difficult, due to the lack of automated methods for visitation detection. In this study, we recruited 38 patients to automatically assess visitation frequency from captured video frames. We used the DensePose R-CNN (ResNet-101) model to calculate the number of people in the room in a video frame. We examined when patients are interrupted the most, and we examined the association between frequent disruptions and patient outcomes on pain and length of stay.  more » « less
Award ID(s):
1750192
NSF-PAR ID:
10213914
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Page Range / eLocation ID:
5450 to 5454
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Currently, many critical care indices are repetitively assessed and recorded by overburdened nurses, e.g. physical function or facial pain expressions of nonverbal patients. In addition, many essential information on patients and their environment are not captured at all, or are captured in a non-granular manner, e.g. sleep disturbance factors such as bright light, loud background noise, or excessive visitations. In this pilot study, we examined the feasibility of using pervasive sensing technology and artificial intelligence for autonomous and granular monitoring of critically ill patients and their environment in the Intensive Care Unit (ICU). As an exemplar prevalent condition, we also characterized delirious and non-delirious patients and their environment. We used wearable sensors, light and sound sensors, and a high-resolution camera to collected data on patients and their environment. We analyzed collected data using deep learning and statistical analysis. Our system performed face detection, face recognition, facial action unit detection, head pose detection, facial expression recognition, posture recognition, actigraphy analysis, sound pressure and light level detection, and visitation frequency detection. We were able to detect patient's face (Mean average precision (mAP)=0.94), recognize patient's face (mAP=0.80), and their postures (F1=0.94). We also found that all facial expressions, 11 activity features, visitation frequency during the day, visitation frequency during the night, light levels, and sound pressure levels during the night were significantly different between delirious and non-delirious patients (p-value<0.05). In summary, we showed that granular and autonomous monitoring of critically ill patients and their environment is feasible and can be used for characterizing critical care conditions and related environment factors. 
    more » « less
  2. Patients staying in the Intensive Care Unit (ICU) have a severely disrupted circadian rhythm. Due to patients' critical medical condition, ICU physicians and nurses have to provide round-the-clock clinical care, further disrupting patients' circadian rhythm. Mistimed family visits during rest-time can also disrupt patients' circadian rhythm. Currently, such effects are only reported based on hospital visitation policies rather than the actual number of visitors and care providers in the room. To quantify visitation disruptions, we used a deep Mask R-CNN model, a deep learning framework for object instance segmentation to detect and quantify the number of individuals in the ICU unit. This study represents the first effort to automatically quantify visitations in an ICU room, which could have implications in terms of policy adjustment, as well as circadian rhythm investigation. Our model achieved precision of 0.97 and recall of 0.67, with F1 score of 0.79 for detecting disruptions in the ICU units. 
    more » « less
  3. Abstract

    The COVID-19 pandemic has boosted digital health utilization, raising concerns about increased physicians’ after-hours clinical work (work-outside-work”). The surge in patients’ digital messages and additional time spent on work-outside-work by telemedicine providers underscores the need to evaluate the connection between digital health utilization and physicians’ after-hours commitments. We examined the impact on physicians’ workload from two types of digital demands - patients’ messages requesting medical advice (PMARs) sent to physicians’ inbox (inbasket), and telemedicine. Our study included 1716 ambulatory-care physicians in New York City regularly practicing between November 2022 and March 2023. Regression analyses assessed primary and interaction effects of (PMARs) and telemedicine on work-outside-work. The study revealed a significant effect ofPMARs on physicians’ work-outside-work and that this relationship is moderated by physicians’ specialties. Non-primary care physicians or specialists experienced a more pronounced effect than their primary care peers. Analysis of their telemedicine load revealed that primary care physicians received fewerPMARs and spent less time in work-outside-work with more telemedicine. Specialists faced increasedPMARs and did more work-outside-work as telemedicine visits increased which could be due to the difference in patient panels. ReducingPMARvolumes and efficient inbasket management strategies needed to reduce physicians’ work-outside-work. Policymakers need to be cognizant of potential disruptions in physicians carefully balanced workload caused by the digital health services.

     
    more » « less
  4. Veauthier, Christian (Ed.)
    Frequent cortical arousal is associated with cardiovascular dysfunction among people with sleep-disordered breathing. Changes in heart rate variability (HRV) can represent pathological conditions associated with autonomic nervous system dysfunction. Previous studies showed changes in cardiac activity due to cortical arousals. However, few studies have examined the instantaneous association between cortical arousal and HRV in an ethnically diverse population. In this study, we included 1,069 subjects’ full night ECG signals from unattended polysomnography in the Multi-Ethnic Study of Atherosclerosis dataset. An automated deep learning tool was employed to annotate arousal events from ECG signals. The etiology (e.g., respiratory, or spontaneous) of each arousal event was classified through a temporal analysis. Time domain HRVs and mean heart rate were calculated on pre-, intra-, and post-arousal segments of a 25-s period for each arousal event. We observed that heart rate and HRVs increased during the arousal onsets in the intra-arousal segments, regardless of arousal etiology. Furthermore, HRVs response to cortical arousal occurrence differed according to gender and the sleep stages in which arousal occurred. The more intense HRVs variation due to arousal in females can contribute to a potentially stronger association between arousal burden and long-term mortality. The excessive abrupt sympathetic tone elevation in REM caused by arousal may provide insights on the association between sleep and sudden cardiac death. 
    more » « less
  5. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The Temple University Hospital Seizure Detection Corpus (TUSZ) [1] has been in distribution since April 2017. It is a subset of the TUH EEG Corpus (TUEG) [2] and the most frequently requested corpus from our 3,000+ subscribers. It was recently featured as the challenge task in the Neureka 2020 Epilepsy Challenge [3]. A summary of the development of the corpus is shown below in Table 1. The TUSZ Corpus is a fully annotated corpus, which means every seizure event that occurs within its files has been annotated. The data is selected from TUEG using a screening process that identifies files most likely to contain seizures [1]. Approximately 7% of the TUEG data contains a seizure event, so it is important we triage TUEG for high yield data. One hour of EEG data requires approximately one hour of human labor to complete annotation using the pipeline described below, so it is important from a financial standpoint that we accurately triage data. A summary of the labels being used to annotate the data is shown in Table 2. Certain standards are put into place to optimize the annotation process while not sacrificing consistency. Due to the nature of EEG recordings, some records start off with a segment of calibration. This portion of the EEG is instantly recognizable and transitions from what resembles lead artifact to a flat line on all the channels. For the sake of seizure annotation, the calibration is ignored, and no time is wasted on it. During the identification of seizure events, a hard “3 second rule” is used to determine whether two events should be combined into a single larger event. This greatly reduces the time that it takes to annotate a file with multiple events occurring in succession. In addition to the required minimum 3 second gap between seizures, part of our standard dictates that no seizure less than 3 seconds be annotated. Although there is no universally accepted definition for how long a seizure must be, we find that it is difficult to discern with confidence between burst suppression or other morphologically similar impressions when the event is only a couple seconds long. This is due to several reasons, the most notable being the lack of evolution which is oftentimes crucial for the determination of a seizure. After the EEG files have been triaged, a team of annotators at NEDC is provided with the files to begin data annotation. An example of an annotation is shown in Figure 1. A summary of the workflow for our annotation process is shown in Figure 2. Several passes are performed over the data to ensure the annotations are accurate. Each file undergoes three passes to ensure that no seizures were missed or misidentified. The first pass of TUSZ involves identifying which files contain seizures and annotating them using our annotation tool. The time it takes to fully annotate a file can vary drastically depending on the specific characteristics of each file; however, on average a file containing multiple seizures takes 7 minutes to fully annotate. This includes the time that it takes to read the patient report as well as traverse through the entire file. Once an event has been identified, the start and stop time for the seizure is stored in our annotation tool. This is done on a channel by channel basis resulting in an accurate representation of the seizure spreading across different parts of the brain. Files that do not contain any seizures take approximately 3 minutes to complete. Even though there is no annotation being made, the file is still carefully examined to make sure that nothing was overlooked. In addition to solely scrolling through a file from start to finish, a file is often examined through different lenses. Depending on the situation, low pass filters are used, as well as increasing the amplitude of certain channels. These techniques are never used in isolation and are meant to further increase our confidence that nothing was missed. Once each file in a given set has been looked at once, the annotators start the review process. The reviewer checks a file and comments any changes that they recommend. This takes about 3 minutes per seizure containing file, which is significantly less time than the first pass. After each file has been commented on, the third pass commences. This step takes about 5 minutes per seizure file and requires the reviewer to accept or reject the changes that the second reviewer suggested. Since tangible changes are made to the annotation using the annotation tool, this step takes a bit longer than the previous one. Assuming 18% of the files contain seizures, a set of 1,000 files takes roughly 127 work hours to annotate. Before an annotator contributes to the data interpretation pipeline, they are trained for several weeks on previous datasets. A new annotator is able to be trained using data that resembles what they would see under normal circumstances. An additional benefit of using released data to train is that it serves as a means of constantly checking our work. If a trainee stumbles across an event that was not previously annotated, it is promptly added, and the data release is updated. It takes about three months to train an annotator to a point where their annotations can be trusted. Even though we carefully screen potential annotators during the hiring process, only about 25% of the annotators we hire survive more than one year doing this work. To ensure that the annotators are consistent in their annotations, the team conducts an interrater agreement evaluation periodically to ensure that there is a consensus within the team. The annotation standards are discussed in Ochal et al. [4]. An extended discussion of interrater agreement can be found in Shah et al. [5]. The most recent release of TUSZ, v1.5.2, represents our efforts to review the quality of the annotations for two upcoming challenges we hosted: an internal deep learning challenge at IBM [6] and the Neureka 2020 Epilepsy Challenge [3]. One of the biggest changes that was made to the annotations was the imposition of a stricter standard for determining the start and stop time of a seizure. Although evolution is still included in the annotations, the start times were altered to start when the spike-wave pattern becomes distinct as opposed to merely when the signal starts to shift from background. This cuts down on background that was mislabeled as a seizure. For seizure end times, all post ictal slowing that was included was removed. The recent release of v1.5.2 did not include any additional data files. Two EEG files had been added because, originally, they were corrupted in v1.5.1 but were able to be retrieved and added for the latest release. The progression from v1.5.0 to v1.5.1 and later to v1.5.2, included the re-annotation of all of the EEG files in order to develop a confident dataset regarding seizure identification. Starting with v1.4.0, we have also developed a blind evaluation set that is withheld for use in competitions. The annotation team is currently working on the next release for TUSZ, v1.6.0, which is expected to occur in August 2020. It will include new data from 2016 to mid-2019. This release will contain 2,296 files from 2016 as well as several thousand files representing the remaining data through mid-2019. In addition to files that were obtained with our standard triaging process, a part of this release consists of EEG files that do not have associated patient reports. Since actual seizure events are in short supply, we are mining a large chunk of data for which we have EEG recordings but no reports. Some of this data contains interesting seizure events collected during long-term EEG sessions or data collected from patients with a history of frequent seizures. It is being mined to increase the number of files in the corpus that have at least one seizure event. We expect v1.6.0 to be released before IEEE SPMB 2020. The TUAR Corpus is an open-source database that is currently available for use by any registered member of our consortium. To register and receive access, please follow the instructions provided at this web page: https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml. The data is located here: https://www.isip.piconepress.com/projects/tuh_eeg/downloads/tuh_eeg_artifact/v2.0.0/. 
    more » « less