skip to main content


Title: The impact of environmental risk factors on delirium and benefits of noise and light modifications: a scoping review
Background: To explore existing literature on the association between environmental risk factors and delirium, and to investigate the effectiveness of environmental modifications on prevention or management of delirium. Methods: This is a scoping review of peer-reviewed studies in PubMed and the reference lists of reviewed articles. Observational studies reporting the effect of noise, light, and circadian rhythm on delirium and interventional studies assessing delirium in modified environments were reviewed. Results: 37 studies were included, 21 of which evaluated the impact of environment on delirium and 16 studied possible solutions to mitigate those impacts. Mixed findings of the reviewed studies yielded inconclusive results; a clearly delineated association between high noise levels, abnormal amounts of light exposure, and sleep disruption with delirium could not be established. The environmental interventions targeted reducing noise exposure, improving daytime and mitigating night-time light exposure to follow circadian rhythm, and promoting sleep. The overall evidence supporting effectiveness of environmental interventions was also of a low confidence; however, quiet-time protocols, earplugs, and bright light therapy showed a benefit for prevention or management of delirium. Conclusions: Environmental modifications are non-invasive, risk-free, and low-cost strategies that may be beneficial in preventing and managing delirium, especially when used as part of a multi-component plan. However, given the limited evidence-based conclusions, further high-quality and larger studies focusing on environmental modifications and delirium outcomes are strongly recommended.  more » « less
Award ID(s):
1750192
NSF-PAR ID:
10213930
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
F1000Research
Volume:
9
ISSN:
2046-1402
Page Range / eLocation ID:
1183
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Cardiovascular disease (CVD) disparities are a particularly devastating manifestation of health inequity. Despite advancements in prevention and treatment, CVD is still the leading cause of death in the United States. Additionally, research indicates that African American (AA) and other ethnic-minority populations are affected by CVD at earlier ages than white Americans. Given that AAs are the fastest-growing population of smartphone owners and users, mobile health (mHealth) technologies offer the unparalleled potential to prevent or improve self-management of chronic disease among this population. Objective To address the unmet need for culturally tailored primordial prevention CVD–focused mHealth interventions, the MOYO app was cocreated with the involvement of young people from this priority community. The overall project aims to develop and evaluate the effectiveness of a novel smartphone app designed to reduce CVD risk factors among urban-AAs, 18-29 years of age. Methods The theoretical underpinning will combine the principles of community-based participatory research and the agile software development framework. The primary outcome goals of the study will be to determine the usability, acceptability, and functionality of the MOYO app, and to build a cloud-based data collection infrastructure suitable for digital epidemiology in a disparity population. Changes in health-related parameters over a 24-week period as determined by both passive (eg, physical activity levels, sleep duration, social networking) and active (eg, use of mood measures, surveys, uploading pictures of meals and blood pressure readings) measures will be the secondary outcome. Participants will be recruited from a majority AA “large city” school district, 2 historically black colleges or universities, and 1 urban undergraduate college. Following baseline screening for inclusion (administered in person), participants will receive the beta version of the MOYO app. Participants will be monitored during a 24-week pilot period. Analyses of varying data including social network dynamics, standard metrics of activity, percentage of time away from a given radius of home, circadian rhythm metrics, and proxies for sleep will be performed. Together with external variables (eg, weather, pollution, and socioeconomic indicators such as food access), these metrics will be used to train machine-learning frameworks to regress them on the self-reported quality of life indicators. Results This 5-year study (2015-2020) is currently in the implementation phase. We believe that MOYO can build upon findings of classical epidemiology and longitudinal studies like the Jackson Heart Study by adding greater granularity to our knowledge of the exposures and behaviors that affect health and disease, and creating a channel for outreach capable of launching interventions, clinical trials, and enhancements of health literacy. Conclusions The results of this pilot will provide valuable information about community cocreation of mHealth programs, efficacious design features, and essential infrastructure for digital epidemiology among young AA adults. International Registered Report Identifier (IRRID) DERR1-10.2196/16699 
    more » « less
  2. null (Ed.)
    Background: Post-operative delirium is a common complication among adult patients in the intensive care unit. Current literature does not support the use of pharmacologic measures to manage this condition, and several studies explore the potential for the use of non-pharmacologic methods such as early mobility plans or environmental modifications. The aim of this systematic review is to examine and report on recently available literature evaluating the relationship between non-pharmacologic management strategies and the reduction of delirium in the intensive care unit. Methods: Six major research databases were systematically searched for articles analyzing the efficacy of non-pharmacologic delirium interventions in the past five years. Search results were restricted to adult human patients aged 18 years or older in the intensive care unit setting, excluding terminally ill subjects and withdrawal-related delirium. Following title, abstract, and full text review, 27 articles fulfilled the inclusion criteria and are included in this report. Results: The 27 reviewed articles consist of 12 interventions with a single-component investigational approach, and 15 with multi-component bundled protocols. Delirium incidence was the most commonly assessed outcome followed by duration. Family visitation was the most effective individual intervention while mobility interventions were the least effective. Two of the three family studies significantly reduced delirium incidence, while one in five mobility studies did the same. Multi-component bundle approaches were the most effective of all; of the reviewed studies, eight of 11 bundles significantly improved delirium incidence and seven of eight bundles decreased the duration of delirium. Conclusions: Multi-component, bundled interventions were more effective at managing intensive care unit delirium than those utilizing an approach with a single interventional element. Although better management of this condition suggests a decrease in resource burden and improvement in patient outcomes, comparative research should be performed to identify the importance of specific bundle elements. 
    more » « less
  3. Abstract Study Objectives

    During adolescence, an interplay between biological and environmental factors leads to constrained sleep duration and timing. The high prevalence of sleep deprivation during this developmental period is a public health concern, given the value of restorative sleep for mental, emotional, and physical health. One of the primary contributing factors is the normative delay of the circadian rhythm. Therefore, the present study aimed to evaluate the effect of a gradually advanced morning exercise schedule (30 min shift each day) completed for 45 min on 5 consecutive mornings, on the circadian phase and daytime functioning of adolescents with a late chronotype, compared with a sedentary control group.

    Methods

    A total of 18 physically inactive male adolescents aged 15–18 years spent 6 nights at the sleep laboratory. The morning procedure included either 45 min walking on a treadmill or sedentary activities in dim light. Saliva dim light melatonin onset, evening sleepiness, and daytime functioning were assessed during the first and last night of laboratory attendance.

    Results

    The morning exercise group had a significantly advanced (earlier) circadian phase (27.5 min ± 32.0), while sedentary activity resulted in a phase delay (−34.3 min ± 53.2). Morning exercise also led to higher evening sleepiness in the earlier hours of the night, but not at bedtime. Mood measures improved slightly in both study conditions.

    Conclusions

    These findings highlight the phase-advancing effect of low-intensity morning exercise among this population. Future studies are needed to test the transference of these laboratory findings to adolescents’ real life.

     
    more » « less
  4. Abstract Study Objectives

    Examine the ability of a physiologically based mathematical model of human circadian rhythms to predict circadian phase, as measured by salivary dim light melatonin onset (DLMO), in children compared to other proxy measurements of circadian phase (bedtime, sleep midpoint, and wake time).

    Methods

    As part of an ongoing clinical trial, a sample of 29 elementary school children (mean age: 7.4 ± .97 years) completed 7 days of wrist actigraphy before a lab visit to assess DLMO. Hourly salivary melatonin samples were collected under dim light conditions (<5 lx). Data from actigraphy were used to generate predictions of circadian phase using both a physiologically based circadian limit cycle oscillator mathematical model (Hannay model), and published regression equations that utilize average sleep onset, midpoint, and offset to predict DLMO. Agreement of proxy predictions with measured DLMO were assessed and compared.

    Results

    DLMO predictions using the Hannay model outperformed DLMO predictions based on children’s sleep/wake parameters with a Lin’s Concordance Correlation Coefficient (LinCCC) of 0.79 compared to 0.41–0.59 for sleep/wake parameters. The mean absolute error was 31 min for the Hannay model compared to 35–38 min for the sleep/wake variables.

    Conclusion

    Our findings suggest that sleep/wake behaviors were weak proxies of DLMO phase in children, but mathematical models using data collected from wearable data can be used to improve the accuracy of those predictions. Additional research is needed to better adapt these adult models for use in children.

    Clinical Trial

    The i Heart Rhythm Project: Healthy Sleep and Behavioral Rhythms for Obesity Prevention https://clinicaltrials.gov/ct2/show/NCT04445740.

     
    more » « less
  5. Circadian rhythms are internal processes repeating approximately every 24 hours in living organisms. The dominant circadian pacemaker is synchronized to the environmental light-dark cycle. Other circadian pacemakers, which can have noncanonical circadian mechanisms, are revealed by arousing stimuli, such as scheduled feeding, palatable meals and running wheel access, or methamphetamine administration. Organisms also have ultradian rhythms, which have periods shorter than circadian rhythms. However, the biological mechanism, origin, and functional significance of ultradian rhythms are not well-elucidated. The dominant circadian rhythm often masks ultradian rhythms; therefore, we disabled the canonical circadian clock of mice by knocking out Per1/2/3 genes, where Per1 and Per2 are essential components of the mammalian light-sensitive circadian mechanism. Furthermore, we recorded wheel-running activity every minute under constant darkness for 272 days. We then investigated rhythmic components in the absence of external influences, applying unique multiscale time-resolved methods to analyze the oscillatory dynamics with time-varying frequencies. We found four rhythmic components with periods of ∼17 h, ∼8 h, ∼4 h, and ∼20 min. When the ∼17-h rhythm was prominent, the ∼8-h rhythm was of low amplitude. This phenomenon occurred periodically approximately every 2-3 weeks. We found that the ∼4-h and ∼20-min rhythms were harmonics of the ∼8-h rhythm. Coupling analysis of the ridge-extracted instantaneous frequencies revealed strong and stable phase coupling from the slower oscillations (∼17, ∼8, and ∼4 h) to the faster oscillations (∼20 min), and weak and less stable phase coupling in the reverse direction and between the slower oscillations. Together, this study elucidated the relationship between the oscillators in the absence of the canonical circadian clock, which is critical for understanding their functional significance. These studies are essential as disruption of circadian rhythms contributes to diseases, such as cancer and obesity, as well as mood disorders. 
    more » « less