skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multivariate Spatial Feature Selection in fMRI
Abstract Multivariate neuroimaging analyses constitute a powerful class of techniques to identify psychological representations. However, not all psychological processes are represented at the same spatial scale throughout the brain. This heterogeneity is apparent when comparing hierarchically organized local representations of perceptual processes to flexible transmodal representations of more abstract cognitive processes such as social and affective operations. An open question is how the spatial scale of analytic approaches interacts with the spatial scale of the representations under investigation. In this article, we describe how multivariate analyses can be viewed as existing on a spatial spectrum, anchored by searchlights used to identify locally distributed patterns of information on one end, whole brain approach used to identify diffuse neural representations at the other, and region-based approaches in between. We describe how these distinctions are an important and often overlooked analytic consideration and provide heuristics to compare these different techniques to choose based on the analyst’s inferential goals.  more » « less
Award ID(s):
1848370
PAR ID:
10213953
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Social Cognitive and Affective Neuroscience
ISSN:
1749-5016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Across multiple domains of social perception - including social categorization, emotion perception, impression formation, and mentalizing - multivariate pattern analysis (MVPA) of fMRI data has permitted a more detailed understanding of how social information is processed and represented in the brain. As in other neuroimaging fields, the neuroscientific study of social perception initially relied on broad structure-function associations derived from univariate fMRI analysis to map neural regions involved in these processes. In this review, we trace the ways that social neuroscience studies using MVPA have built on these neuroanatomical associations to better characterize the computational relevance of different brain regions, and how MVPA allows explicit tests of the correspondence between psychological models and the neural representation of social information. We also describe current and future advances in methodological approaches to multivariate fMRI data and their theoretical value for the neuroscience of social perception. 
    more » « less
  2. Abstract Meta‐analytic techniques for mining the neuroimaging literature continue to exert an impact on our conceptualization of functional brain networks contributing to human emotion and cognition. Traditional theories regarding the neurobiological substrates contributing to affective processing are shifting from regional‐ towards more network‐based heuristic frameworks. To elucidate differential brain network involvement linked to distinct aspects of emotion processing, we applied an emergent meta‐analytic clustering approach to the extensive body of affective neuroimaging results archived in the BrainMap database. Specifically, we performed hierarchical clustering on the modeled activation maps from 1,747 experiments in the affective processing domain, resulting in five meta‐analytic groupings of experiments demonstrating whole‐brain recruitment. Behavioral inference analyses conducted for each of these groupings suggested dissociable networks supporting: (1) visual perception within primary and associative visual cortices, (2) auditory perception within primary auditory cortices, (3) attention to emotionally salient information within insular, anterior cingulate, and subcortical regions, (4) appraisal and prediction of emotional events within medial prefrontal and posterior cingulate cortices, and (5) induction of emotional responses within amygdala and fusiform gyri. These meta‐analytic outcomes are consistent with a contemporary psychological model of affective processing in which emotionally salient information from perceived stimuli are integrated with previous experiences to engender a subjective affective response. This study highlights the utility of using emergent meta‐analytic methods to inform and extend psychological theories and suggests that emotions are manifest as the eventual consequence of interactions between large‐scale brain networks. 
    more » « less
  3. Reaching a global view of brain organization requires assembling evidence on widely different mental processes and mechanisms. The variety of human neuroscience concepts and terminology poses a fundamental challenge to relating brain imaging results across the scientific literature. Existing meta-analysis methods perform statistical tests on sets of publications associated with a particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently. We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model predicts the spatial distribution of neurological observations, given text describing an experiment, cognitive process, or disease. This approach handles text of arbitrary length and terms that are too rare for standard meta-analysis. We capture the relationships and neural correlates of 7547 neuroscience terms across 13 459 neuroimaging publications. The resulting meta-analytic tool, neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive view of published findings on the brain. 
    more » « less
  4. Abstract Recent years have seen a surge of exciting developments in the computational tools available to social neuroscientists. This paper highlights and synthesizes recent advances that have been enabled by the application of such tools, as well as methodological innovations likely to be of interest and utility to social neuroscientists, but that have been concentrated in other sub-fields. Papers in this special issue are emphasized—many of which contain instructive materials (e.g. tutorials and code) for researchers new to the highlighted methods. These include approaches for modeling social decisions, characterizing multivariate neural response patterns at varying spatial scales, using decoded neurofeedback to draw causal links between specific neural response patterns and psychological and behavioral phenomena, examining time-varying patterns of connectivity between brain regions, and characterizing the social networks in which social thought and behavior unfold in everyday life. By combining computational methods for characterizing participants’ rich social environments—at the levels of stimuli, paradigms and the webs of social relationships that surround people—with those for capturing the psychological processes that undergird social behavior and the wealth of information contained in neuroimaging datasets, social neuroscientists can gain new insights into how people create, understand and navigate their complex social worlds. 
    more » « less
  5. null (Ed.)
    Abstract Population analyses of functional connectivity have provided a rich understanding of how brain function differs across time, individual, and cognitive task. An important but challenging task in such population analyses is the identification of reliable features that describe the function of the brain, while accounting for individual heterogeneity. Our work is motivated by two particularly important challenges in this area: first, how can one analyze functional connectivity data over populations of individuals, and second, how can one use these analyses to infer group similarities and differences. Motivated by these challenges, we model population connectivity data as a multilayer network and develop the multi-node2vec algorithm, an efficient and scalable embedding method that automatically learns continuous node feature representations from multilayer networks. We use multi-node2vec to analyze resting state fMRI scans over a group of 74 healthy individuals and 60 patients with schizophrenia. We demonstrate how multilayer network embeddings can be used to visualize, cluster, and classify functional regions of the brain for these individuals. We furthermore compare the multilayer network embeddings of the two groups. We identify significant differences between the groups in the default mode network and salience network—findings that are supported by the triple network model theory of cognitive organization. Our findings reveal that multi-node2vec is a powerful and reliable method for analyzing multilayer networks. Data and publicly available code are available at https://github.com/jdwilson4/multi-node2vec . 
    more » « less