skip to main content


Title: Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics
Wearable electronics can be integrated with the human body for monitoring physical activities and health conditions, for human-computer interfaces, and for virtual/augmented reality. We here report a multifunctional wearable electronic system that combines advances in materials, chemistry, and mechanics to enable superior stretchability, self-healability, recyclability, and reconfigurability. This electronic system heterogeneously integrates rigid, soft, and liquid materials through a low-cost fabrication method. The properties reported in this wearable electronic system can find applications in many areas, including health care, robotics, and prosthetics, and can benefit the well-being, economy, and sustainability of our society.  more » « less
Award ID(s):
1762324
NSF-PAR ID:
10213985
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
45
ISSN:
2375-2548
Page Range / eLocation ID:
eabd0202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent advances in flexible materials, nanomanufacturing, and system integration have provided a great opportunity to develop wearable flexible hybrid electronics for human healthcare, diagnostics, and therapeutics. However, existing medical devices still rely on rigid electronics with many wires and separate components, which hinders wireless, comfortable, continuous monitoring of health‐related human motions. Advanced materials and system integration technologies are introduced that enable soft, active wireless, thin‐film bioelectronics. This low‐modulus, highly flexible wearable electronic system incorporates a nanomembrane wireless circuit and functional chip components enclosed by a soft elastomeric membrane. It can be gently and seamlessly mounted on the skin, while offering comfortable, highly sensitive and accurate detection of head movements. The wireless, skin‐like bioelectronic system (SKINTRONICS) is utilized for quantitative diagnostics of cervical dystonia (CD), which is characterized by involuntary abnormal head postures and repetitive head movements, sometimes with neck muscle pain. A set of analytical and experimental studies shows a soft system packaging, hard–soft materials integration, and quantitative assessment of physiological signals detected by the SKINTRONICS. In vivo demonstration, involving 10 human subjects, finds the device feasible for use in CD measurement.

     
    more » « less
  2. Abstract

    Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field‐deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject's stress under realistic working environments. Herein, a soft, field‐deployable, wearable bioelectronic system is introduced for detecting outdoor workers' stress levels with negligible motion artifacts and controllable thermal management. A nanofabric radiative cooler (NFRC) and miniaturized sensors with a nanomembrane soft electronic platform are integrated to measure stable electrodermal activities and temperature in hot outdoor conditions. The NFRC exhibits outstanding cooling performance in sub‐ambient air with high solar reflectivity and high thermal emissivity. The integrated wearable device with all embedded electronic components and the NFRC shows a lower temperature (41.1%) in sub‐ambient air than the NFRC‐less device while capturing improved operation time (18.2%). In vivo human study of the bioelectronics with agricultural activities demonstrates the device's capability for portable, continuous, real‐time health monitoring of outdoor workers with field deployability.

     
    more » « less
  3. Abstract Electronic textiles capable of sensing, powering, and communication can be used to non-intrusively monitor human health during daily life. However, achieving these functionalities with clothing is challenging because of limitations in the electronic performance, flexibility and robustness of the underlying materials, which must endure repeated mechanical, thermal and chemical stresses during daily use. Here, we demonstrate electronic textile systems with functionalities in near-field powering and communication created by digital embroidery of liquid metal fibers. Owing to the unique electrical and mechanical properties of the liquid metal fibers, these electronic textiles can conform to body surfaces and establish robust wireless connectivity with nearby wearable or implantable devices, even during strenuous exercise. By transferring optimized electromagnetic patterns onto clothing in this way, we demonstrate a washable electronic shirt that can be wirelessly powered by a smartphone and continuously monitor axillary temperature without interfering with daily activities. 
    more » « less
  4. Abstract

    The need to develop wearable devices for personal health monitoring, diagnostics, and therapy has inspired the production of innovative on‐demand, customizable technologies. Several of these technologies enable printing of raw electronic materials directly onto biological organs and tissues. However, few of them have been thoroughly investigated for biocompatibility of the raw materials on the cellular, tissue, and organ levels or with different cell types. In addition, highly accurate multiday in vivo monitoring using such on‐demand, in situ fabricated devices has yet to be done. Presented herein is the first fully biocompatible, on‐skin fabricated electronics for multiple cell types and tissues that can capture electrophysiological signals with high fidelity. While also demonstrating improved mechanical and electrical properties, the drawn‐on‐skin ink retains its properties under various writing conditions, which minimizes the variation in electrical performance. Furthermore, the drawn‐on‐skin ink shows excellent biocompatibility with cardiomyocytes, neurons, mice skin tissue, and human skin. The high signal‐to‐noise ratios of the electrophysiological signals recorded with the DoS sensor over multiple days demonstrate its potential for personalized, long‐term, and accurate electrophysiological health monitoring.

     
    more » « less
  5. Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body’s continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life. 
    more » « less