Vibration‐based energy‐harvesting technology, as an alternative power source, represents one of the most promising solutions to the problem of battery capacity limitations in wearable and implantable electronics, in particular implantable biomedical devices. Four primary energy transduction mechanisms are reviewed, namely piezoelectric, electromagnetic, electrostatic, and triboelectric mechanisms for vibration‐based energy harvesters. Through generic modeling and analyses, it is shown that various approaches can be used to tune the operation bandwidth to collect appreciable power. Recent progress in biomechanical energy harvesters is also shown by utilizing various types of motion from bodies and organs of humans and animals. To conclude, perspectives on next‐generation energy‐harvesting systems are given, whereby the ultimate intelligent, autonomous, and tunable energy harvesters will provide a new energy platform for electronics and wearable and implantable medical devices.
- PAR ID:
- 10335836
- Date Published:
- Journal Name:
- ACS Biomaterials Science & Engineering
- ISSN:
- 2373-9878
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Motion energy harvesting is an ideal alternative to battery in wearable applications since it can produce energy on demand. So far, widespread use of this technology has been hindered by bulky, inflexible and impractical designs. New flexible piezoelectric materials enable comfortable use of this technology. However, the energy harvesting potential of this approach has not been thoroughly investigated to date. This paper presents a novel mathematical model for estimating the energy that can be harvested from joint movements on the human body. The proposed model is validated using two different piezoelectric materials attached on a 3D model of the human knee. To the best of our knowledge, this is the first study that combines analytical modeling and experimental validation for joint movements. Thorough experimental evaluations show that 1) users can generate on average 13 μW power while walking, 2) we can predict the generated power with 4.8% modeling error.more » « less
-
Emerging flexible and stretchable devices open up novel and attractive applications beyond traditional rigid wearable devices. Since the small and flexible form-factor severely limits the battery capacity, energy harvesting (EH) stands out as a critical enabler of new devices. Despite increasing interest in recent years, the capacity of wearable energy harvesting remains unknown. Prior work analyzes the power generated by a single and typically rigid transducer. This choice limits the EH potential and undermines physical flexibility. Moreover, current results do not translate to total harvested energy over a given period, which is crucial from a developer perspective. In contrast, this paper explores the daily energy harvesting potential of combining flexible light and motion energy harvesters. It first presents a multi-modal energy harvesting system design whose inputs are flexible photo-voltaic cells and piezoelectric patches. We measure the generated power under various light intensity and gait speeds. Finally, we construct daily energy harvesting patterns of 9593 users by integrating our measurements with the activity data from the American Time Use Survey. Our results show that the proposed system can harvest on average 0. 6mAh @ 3. 6V per day.more » « less
-
Abstract In the past two decades, mechanical energy harvesting technologies have been developed in various ways to support or power small‐scale electronics. Nevertheless, the strategy for enhancing current and charge performance of flexible piezoelectric energy harvesters using a simple and cost‐effective process is still a challenging issue. Herein, a 1D–3D (1‐3) fully piezoelectric nanocomposite is developed using perovskite BaTiO3(BT) nanowire (NW)‐employed poly(vinylidene fluoride‐
co ‐trifluoroethylene) (P(VDF‐TrFE)) for a high‐performance hybrid nanocomposite generator (hNCG) device. The harvested output of the flexible hNCG reaches up to ≈14 V and ≈4 µA, which is higher than the current levels of even previous piezoceramic film‐based flexible energy harvesters. Finite element analysis method simulations study that the outstanding performance of hNCG devices attributes to not only the piezoelectric synergy of well‐controlled BT NWs and within P(VDF‐TrFE) matrix, but also the effective stress transferability of piezopolymer. As a proof of concept, the flexible hNCG is directly attached to a hand to scavenge energy using a human motion in various biomechanical frequencies for self‐powered wearable patch device applications. This research can pave the way for a new approach to high‐performance wearable and biocompatible self‐sufficient electronics. -
Reverse electrowetting-on-dielectric (REWOD) energy harvesting is an effective energy harvesting method at low frequencies such as the frequencies of human motion. Various REWOD energy harvester designs have been presented in prior works, but these generally use rigid and often expensive substrates and time-consuming and/or costly fabrication methods. To address these challenges, in this work REWOD energy harvesters were fabricated consisting of aluminized polyester sheets as the functional layers and with polycarbonate sheets for added mechanical support. The fabrication of these samples eliminates the need for costly materials, clean room technologies, and high-end equipment. Samples were characterized using a flat arrangement and on a test fixture that simulates the repeated bending that occurs on the back of a bending knee. Without applying any external bias voltage, the maximum voltage and current output for the bending samples were determined to be 25.1 mV and 230 nA, respectively, and the corresponding maximum power is 5.77 nW at a bending frequency of 5 Hz. With an estimated cost of U.S. $ 0.28 for each REWOD harvester (U.S. $ 0.03/cm2), the cost per nanowatt of power is U.S. $ 0.05/nW, which is approximately 380 times lower than the approximately U.S. $ 19/nW of our previous REWOD energy harvesters. Our simple devices provide a low-cost, easily fabricated flexible approach to wearable motion sensing and energy harvesting that can be useful for various healthcare applications.more » « less