Recently, there has been a major emphasis on developing data-driven approaches involving machine learning (ML) for high-speed static state estimation (SE) in power systems. The emphasis stems from the ability of ML to overcome difficulties associated with model-based approaches, such as handling of non-Gaussian measurement noise. However, topology changes pose a stiff challenge for performing ML-based SE because the training and test environments become different when such changes occur. This paper circumvents this challenge by formulating a graph neural network (GNN)-based time-synchronized state estimator that considers the physical connections of the power system during the training itself. The results obtained using the IEEE 118-bus system indicate that the GNN-based state estimator outperforms both the model-based linear state estimator and a data-driven deep neural network-based state estimator in the presence of non-Gaussian measurement noise and topology changes, respectively.
more »
« less
A Comparative Study of Surrogate Based Learning Methods in Solving Power Flow Problem
Due to increasing volume of measurements in smart grids, surrogate based learning approaches for modeling the power grids are becoming popular. This paper uses regression based models to find the unknown state variables on power systems. Generally, to determine these states, nonlinear systems of power flow equations are solved iteratively. This study considers that the power flow problem can be modeled as an data driven type of a model. Then, the state variables, i.e., voltage magnitudes and phase angles are obtained using machine learning based approaches, namely, Extreme Learning Machine (ELM), Gaussian Process Regression (GPR), and Support Vector Regression (SVR). Several simulations are performed on the IEEE 14 and 30-Bus test systems to validate surrogate based learning based models. Moreover, input data was modified with noise to simulate measurement errors. Numerical results showed that all three models can find state variables reasonably well even with measurement noise.
more »
« less
- Award ID(s):
- 2001732
- PAR ID:
- 10214061
- Date Published:
- Journal Name:
- IEEE Power and Energy Society General Meeting
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Surrogate models have several uses in engineering design, including speeding up design optimization, noise reduction, test measurement interpolation, gradient estimation, portability, and protection of intellectual property. Traditionally, surrogate models require that all training data conform to the same parametrization (e.g., design variables), limiting design freedom and prohibiting the reuse of historical data. In response, this article proposes graph-based surrogate models (GSMs) for trusses. The GSM can accurately predict displacement fields from static loads given the structure’s geometry as input, enabling training across multiple parametrizations. GSMs build upon recent advancements in geometric deep learning, which have led to the ability to learn on undirected graphs: a natural representation for trusses. To further promote flexible surrogate models, this article explores transfer learning within the context of engineering design and demonstrates positive knowledge transfer across data sets of different topologies, complexities, loads, and applications, resulting in more flexible and data-efficient surrogate models for trusses.more » « less
-
As power systems evolve with the increasing integration of renewable energy sources and smart grid technologies, there is a growing demand for flexible and scalable modeling approaches capable of capturing the complex dynamics of modern grids. This review focuses on symbolic regression, a powerful methodology for deriving parsimonious and interpretable mathematical models directly from data. Symbolic regression is particularly valuable for power systems due to its ability to uncover governing equations without prior structural assumptions, enabling transparent and data-driven insights into nonlinear system behavior. The paper presents a comprehensive overview of symbolic regression methods, including sparse identification of nonlinear dynamics, automatic regression for governing equations, and deep symbolic regression, highlighting their applications in power systems. Through comparative case studies of the single machine infinite bus system, grid-following, and grid-forming inverters, we analyze the strengths, limitations, and suitability of each symbolic regression method in modeling nonlinear power system dynamics. Additionally, we identify critical research gaps and discuss future directions for leveraging symbolic regression in the optimization, control, and operation of modern power grids. This review aims to provide a valuable resource for researchers and engineers seeking innovative, data-driven solutions for modeling in the context of evolving power system infrastructure.more » « less
-
Smart grids are facing many challenges including cyber-attacks which can cause devastating damages to the grids. Existing machine learning based approaches for detecting cyber-attacks in smart grids are mainly based on supervised learning, which needs representative instances from various attack types to obtain good detection models. In this paper, we investigated semi-supervised outlier detection algorithms for this problem which only use instances of normal events for model training. Data collected by phasor measurement units (PMUs) was used for training the detection model. The semi-supervised outlier detection algorithms were augmented with deep feature extraction for enhanced detection performance. Our results show that semi-supervised outlier detection algorithms can perform better than popular supervised algorithms. Deep feature extraction can significantly improve the performance of semi-supervised algorithms for detecting cyber-attacks in smart gridsmore » « less
-
Alber, Mark (Ed.)Biological systems exhibit complex dynamics that differential equations can often adeptly represent. Ordinary differential equation models are widespread; until recently their construction has required extensive prior knowledge of the system. Machine learning methods offer alternative means of model construction: differential equation models can be learnt from data via model discovery using sparse identification of nonlinear dynamics (SINDy). However, SINDy struggles with realistic levels of biological noise and is limited in its ability to incorporate prior knowledge of the system. We propose a data-driven framework for model discovery and model selection using hybrid dynamical systems: partial models containing missing terms. Neural networks are used to approximate the unknown dynamics of a system, enabling the denoising of the data while simultaneously learning the latent dynamics. Simulations from the fitted neural network are then used to infer models using sparse regression. We show, via model selection, that model discovery using hybrid dynamical systems outperforms alternative approaches. We find it possible to infer models correctly up to high levels of biological noise of different types. We demonstrate the potential to learn models from sparse, noisy data in application to a canonical cell state transition using data derived from single-cell transcriptomics. Overall, this approach provides a practical framework for model discovery in biology in cases where data are noisy and sparse, of particular utility when the underlying biological mechanisms are partially but incompletely known.more » « less
An official website of the United States government

