skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metacognition and Motivation: The Role of Time-Awareness in Preparation for Future Learning.
Abstract: In this work, we investigate how two factors, metacognitive skills and motivation, would impact student learning across domains. More specifically, our primary goal is to identify the critical, yet robust, interaction patterns of these two factors that would contribute to students' performance in learning logic first and then their performance on a subsequent new domain, probability. We are concerned with two types of metacognitive skills: strategy-awareness and time-awareness, that is, which problem-solving strategy to use and when to use it. Our data were collected from 495 participants across three consecutive semesters, and our results show that the only students who consistently outperform their peers across both domains are those who are not only highly motivated but also strategy-aware and time-aware.  more » « less
Award ID(s):
1651909
PAR ID:
10214147
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
In Proceedings of the 42nd Annual Conference of the Cognitive Science Society (COGSCI'20)
Page Range / eLocation ID:
pp 945-951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Being conscious of your thought processes is known as metacognition. It supports students in being more aware of their actions, motivations, and the potential applications of the skills [1]. This study investigates how different metacognitive judgment questions affect students’ metacognitive awareness in an augmented reality (AR) environment. The outcomes of this study will help us to understand what metacognitive monitoring method is more effective in the AR learning environment. According to the literature, students with high knowledge about cognition have higher test performance, while students with low regulation have a challenge during planning, organizing, and elaborating strategies. The dependent variables of the study are student learning performance and metacognitive awareness inventory (MAI) score, and one independent variable is the metacognitive judgment question Retrospective Confidence Judgment (RCJ) and Judgment of Learning (JOL). We hypothesized that the students with high performance would have improved MAI scores in both groups. The experiment was done with two groups (RCJ and JOL). Both groups responded to the pre-post metacognitive awareness inventory questionnaire. During the experiment, the MAI questionnaire was asked two times. In round one, the MAI questionnaire was asked at the beginning of lecture one; however, in round two, the questionnaire was asked at the end of lecture two. Results indicated significant differences in RCJ low performers. In RCJ, the participants whose performance was significantly reduced in lecture 2 had a higher improvement on MAI both regulation and knowledge about cognition. Overall, the result of our study could advance our understanding of how to design an advanced instructional strategy in an AR environment. 
    more » « less
  2. In deductive domains, three metacognitive knowledge types in ascending order are declarative, procedural, and conditional learning. This work leverages Deep Reinforcement Learning (\textit{DRL}) in providing \textit{adaptive} metacognitive interventions to bridge the gap between the three knowledge types and prepare students for future learning across Intelligent Tutoring Systems (ITSs). Students received these interventions that taught \textit{how} and \textit{when} to use a backward-chaining (BC) strategy on a logic tutor that supports a default forward-chaining strategy. Six weeks later, we trained students on a probability tutor that only supports BC without interventions. Our results show that on both ITSs, DRL bridged the metacognitive knowledge gap between students and significantly improved their learning performance over their control peers. Furthermore, the DRL policy adapted to the metacognitive development on the logic tutor across declarative, procedural, and conditional students, causing their strategic decisions to be more autonomous. 
    more » « less
  3. Metacognition is the understanding of your own knowledge including what knowledge you do not have and what knowledge you do have. This includes knowledge of strategies and regulation of one’s own cognition. Studying metacognition is important because higher-order thinking is commonly used, and problem-solving skills are positively correlated with metacognition. A positive previous disposition to metacognition can improve problem-solving skills. Metacognition is a key skill in design and manufacturing, as teams of engineers must solve complex problems. Moreover, metacognition increases individual and team performance and can lead to more original ideas. This study discusses the assessment of metacognitive skills in engineering students by having the students participate in hands-on and virtual reality activities related to design and manufacturing. The study is guided by two research questions: (1) do the proposed activities affect students’ metacognition in terms of monitoring, awareness, planning, self-checking, or strategy selection, and (2) are there other components of metacognition that are affected by the design and manufacturing activities? The hypothesis is that the participation in the proposed activities will improve problem-solving skills and metacognitive awareness of the engineering students. A total of 34 undergraduate students participated in the study. Of these, 32 were male and 2 were female students. All students stated that they were interested in pursuing a career in engineering. The students were divided into two groups with the first group being the initial pilot run of the data. In this first group there were 24 students, in the second group there were 10 students. The groups’ demographics were nearly identical to each other. Analysis of the collected data indicated that problem-solving skills contribute to metacognitive skills and may develop first in students before larger metacognitive constructs of awareness, monitoring, planning, self-checking, and strategy selection. Based on this, we recommend that the problem-solving skills and expertise in solving engineering problems should be developed in students before other skills emerge or can be measured. While we are sure that the students who participated in our study have awareness as well as the other metacognitive skills in reading, writing, science, and math, they are still developing in relation to engineering problems. 
    more » « less
  4. With the growing need for augmented reality (AR) technology, understanding and optimizing study behaviors in AR learning environments has become crucial. However, one major drawback of AR learning is the absence of effective feedback mechanisms for students. To overcome this challenge, we introduced metacognitive monitoring feedback. Additionally, we created a location-based AR learning environment utilizing a real-time indoor tracking system to further enhance student learning. This study focuses on the positive impact of metacognitive monitoring feedback in a location-based AR learning environment. Our hypothesis posits that regularly providing students with feedback on their metacognitive monitoring within this new AR learning system positively influences their metacognitive awareness. The study's findings confirm that frequent exposure to such feedback significantly enhances the Metacognitive Awareness Inventory (MAI) scores. Participants who received continuous feedback demonstrated a significant increase in MAI scores compared to those who received feedback only once after the lecture. This improvement is achieved by influencing student calibration and directly enhancing their metacognitive awareness. 
    more » « less
  5. null (Ed.)
    Metacognition is awareness and control of thinking for learning. Strong metacognitive skills have the power to impact student learning and performance. While metacognition can develop over time with practice, many students struggle to meaningfully engage in metacognitive processes. In an evidence-based teaching guide associated with this paper ( https://lse.ascb.org/evidence-based-teaching-guides/student-metacognition ), we outline the reasons metacognition is critical for learning and summarize relevant research on this topic. We focus on three main areas in which faculty can foster students’ metacognition: supporting student learning strategies (i.e., study skills), encouraging monitoring and control of learning, and promoting social metacognition during group work. We distill insights from key papers into general recommendations for instruction, as well as a special list of four recommendations that instructors can implement in any course. We encourage both instructors and researchers to target metacognition to help students improve their learning and performance. 
    more » « less