- Award ID(s):
- 2013502
- NSF-PAR ID:
- 10525808
- Publisher / Repository:
- The Cognitive Science Society
- Date Published:
- Volume:
- 45
- Format(s):
- Medium: X
- Location:
- Proceedings of the Annual Meeting of the Cognitive Science Society
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract: In this work, we investigate how two factors, metacognitive skills and motivation, would impact student learning across domains. More specifically, our primary goal is to identify the critical, yet robust, interaction patterns of these two factors that would contribute to students' performance in learning logic first and then their performance on a subsequent new domain, probability. We are concerned with two types of metacognitive skills: strategy-awareness and time-awareness, that is, which problem-solving strategy to use and when to use it. Our data were collected from 495 participants across three consecutive semesters, and our results show that the only students who consistently outperform their peers across both domains are those who are not only highly motivated but also strategy-aware and time-aware.more » « less
-
Intelligent Tutoring Systems (ITSs) leverage AI to adapt to individual students, and many ITSs employ \emph{pedagogical policies} to decide what instructional action to take next in the face of alternatives. A number of researchers applied Reinforcement Learning (RL) and Deep RL (DRL) to induce effective pedagogical policies. Much of prior work, however, has been developed \emph{independently} for a specific ITS and \emph{cannot directly be applied to another}. In this work, we propose a \textbf{M}ulti-\textbf{T}ask \textbf{L}earning framework that combines Deep \textbf{BI}simulation \textbf{M}etrics and DRL, named \textbf{MTL-BIM}, to induce a unified pedagogical policies for two different ITSs across different domains: logic and probability. Based on empirical classroom results, our unified RL policy performed significantly better than the expert-crafted policies and independently induced DQN policies on both ITSs.more » « less
-
Abstract Learning to derive subgoals reduces the gap between experts and students and makes students prepared for future problem solving. Researchers have explored subgoal-labeled instructional materials in traditional problem solving and within tutoring systems to help novices learn to subgoal. However, only a little research is found on problem-solving strategies in relationship with subgoal learning. Also, these strategies are under-explored within computer-based tutors and learning environments. The backward problem-solving strategy is closely related to the process of subgoaling, where problem solving iteratively refines the goal into a new subgoal to reduce difficulty. In this paper, we explore a training strategy for backward strategy learning within an intelligent logic tutor that teaches logic-proof construction. The training session involved backward worked examples (BWE) and problem solving (BPS) to help students learn backward strategy towards improving their subgoaling and problem-solving skills. To evaluate the training strategy, we analyzed students’ 1) experience with and engagement in learning backward strategy, 2) performance and 3) proof construction approaches in new problems that they solved independently without tutor help after each level of training and in posttest. Our results showed that, when new problems were given to solve without any tutor help, students who were trained with both BWE and BPS outperformed students who received none of the treatment or only BWE during training. Additionally, students trained with both BWE and BPS derived subgoals during proof construction with significantly higher efficiency than the other two groups.
-
Abstract Undergraduate STEM lecture courses enroll hundreds who must master declarative, conceptual, and applied learning objectives. To support them, instructors have turned to active learning designs that require students to engage in
self-regulated learning (SRL). Undergraduates struggle with SRL, and universities provide courses, workshops, and digital training to scaffold SRL skill development and enactment. We examined two theory-aligned designs of digital skill trainings that scaffold SRL and how students’ demonstration of metacognitive knowledge of learning skills predicted exam performance in biology courses where training took place. In Study 1, students’ (n = 49) responses to training activities were scored for quality and summed by training topic and level of understanding. Behavioral and environmental regulation knowledge predicted midterm and final exam grades; knowledge of SRL processes did not. Declarative and conceptual levels of skill-mastery predicted exam performance; application-level knowledge did not. When modeled by topic at each level of understanding, declarative knowledge of behavioral and environmental regulation and conceptual knowledge of cognitive strategies predicted final exam performance. In Study 2 (n = 62), knowledge demonstrated during a redesigned video-based multimedia version of behavioral and environmental regulation again predicted biology exam performance. Across studies, performance on training activities designed in alignment with skill-training models predicted course performances and predictions were sustained in a redesign prioritizing learning efficiency. Training learners’ SRL skills –and specifically cognitive strategies and environmental regulation– benefited their later biology course performances across studies, which demonstrate the value of providing brief, digital activities to develop learning skills. Ongoing refinement to materials designed to develop metacognitive processing and learners’ ability to apply skills in new contexts can increase benefits. -
Free-body diagrams (FBDs) are diagrammatic representations of external forces and moments exerted on an object of interest for solving kinetics problems. Several studies have reported different ways of teaching FBDs in terms of pictorial representation of forces (e.g., placement of vectors or labeling). However, there is little research on practice strategies for helping students learn how to draw FBDs. Through the use of task analysis and a model of subgoal learning, we will develop task-analysis-guided deliberate practice to enhance learning. Task analysis is often used in instructional design to extract knowledge requirements for acquiring a skill. Skill acquisition is usually divided into three phases including declarative, knowledge compilation, and procedural. Task analysis in our study will identify relevant declarative and procedural knowledge related to drawing FBDs. The findings will be used to develop deliberate practice. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. This has been viewed as a gold standard for practice. Although deliberate practice is mainly studied among elite performers, the recent literature has revealed promising results for novices. Considering cognitive capacity limitations, we will apply cognitive load theory to develop deliberate practice to help students build declarative and procedural knowledge without exceeding their working memory limitations. A knowledge extraction expert will take an iterative approach to conduct task analyses with a subject matter expert (or experts)to distill knowledge to a level that is appropriate for students in the dynamics course. We will then integrate the task analysis results with instructional design strategies derived from cognitive load theory and the subgoal learning model to develop deliberate practice and assessment materials. Examples and assessment results will be provided to evaluate the effectiveness of the instructional design strategies as well as the challenges.more » « less