skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine learning enables prompt prediction of hydration kinetics of multicomponent cementitious systems
Abstract Carbonaceous (e.g., limestone) and aluminosilicate (e.g., calcined clay) mineral additives are routinely used to partially replace ordinary portland cement in concrete to alleviate its energy impact and carbon footprint. These mineral additives—depending on their physicochemical characteristics—alter the hydration behavior of cement; which, in turn, affects the evolution of microstructure of concrete, as well as the development of its properties (e.g., compressive strength). Numerical, reaction-kinetics models—e.g., phase boundary nucleation-and-growth models; which are based partly on theoretically-derived kinetic mechanisms, and partly on assumptions—are unable to produce a priori prediction of hydration kinetics of cement; especially in multicomponent systems, wherein chemical interactions among cement, water, and mineral additives occur concurrently. This paper introduces a machine learning-based methodology to enable prompt and high-fidelity prediction of time-dependent hydration kinetics of cement, both in plain and multicomponent (e.g., binary; and ternary) systems, using the system’s physicochemical characteristics as inputs. Based on a database comprising hydration kinetics profiles of 235 unique systems—encompassing 7 synthetic cements and three mineral additives with disparate physicochemical attributes—a random forests (RF) model was rigorously trained to establish the underlying composition-reactivity correlations. This training was subsequently leveraged by the RF model: to predict time-dependent hydration kinetics of cement in new, multicomponent systems; and to formulate optimal mixture designs that satisfy user-imposed kinetics criteria.  more » « less
Award ID(s):
1932690 1661609
PAR ID:
10214257
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A novel internal conditioning (InCon) technique based on saturated sodium montmorillonite (sMT) functionalized with two non-ionic surfactants, polyoxyethylene (9) nonylphenylether and t-octyl phenoxy poly ethoxyethanol, is investigated in this study. With the integration of water for internal curing and pozzolanic reactivity in a single system, the role of InCon in modifying cement hydration kinetics is comprehensively elucidated. The results indicate that, in the presence of InCon, both silicate reaction and secondary aluminate reaction rates are enhanced, and the apparent activation energy (Ea) of cement hydration was decreased from 34.3 KJ/mol to 28.7 KJ/mol indicating a lower temperature sensitivity and threshold of the cement hydration reactions. In addition, decreased CH contents, improved degree of hydration, increased chemical shrinkage, and the formation of additional Csingle bondSsingle bondH and aluminum-containing phases were obtained from the cement with InCon. The autogenous shrinkage of cement and the negative impact of dry sMT on the early age strength of cement can be offset by InCon paving a new path to improve the overall properties of concrete. 
    more » « less
  2. The dissolution kinetics of Portland cement is a critical factor in controlling the hydration reaction and improving the performance of concrete. Tricalcium silicate (C3S), the primary phase in Portland cement, is known to have complex dissolution mechanisms that involve multiple reactions and changes to particle surfaces. As a result, current analytical models are unable to accurately predict the dissolution kinetics of C3S in various solvents when it is undersaturated with respect to the solvent. This paper employs the deep forest (DF) model to predict the dissolution rate of C3S in the undersaturated solvent. The DF model takes into account several variables, including the measurement method (i.e., reactor connected to inductive coupled plasma spectrometer and flow chamber with vertical scanning interferometry), temperature, and physicochemical properties of solvents. Next, the DF model evaluates the influence of each variable on the dissolution rate of C3S, and this information is used to develop a closed-form analytical model that can predict the dissolution rate of C3S. The coefficients and constant of the analytical model are optimized in two scenarios: generic and alkaline solvents. The results show that both the DF and analytical models are able to produce reliable predictions of the dissolution rate of C3S when it is undersaturated and far from equilibrium. 
    more » « less
  3. Additives such as nano-silica and fly ash are widely used in cement and concrete materials to improve the rheology of fresh cement and concrete and the performance of hardened materials and increase the sustainability of the cement and concrete industry by reducing the usage of Portland cement. Therefore, it is important to study the effect of these additives on the rheological behavior of fresh cement. In this paper, we study the pulsating Poiseuille flow of fresh cement in a horizontal pipe by considering two different additives and when they are combined (nano-silica, fly ash, combined nano-silica, and fly ash). To model the fresh cement suspension, we used a modified form of the power-law model to demonstrate the dependency of the cement viscosity on the shear rate and volume fraction of cement and the additive particles. The convection–diffusion equation was used to solve for the volume fraction. After solving the equations in the dimensionless forms, we conducted a parametric study to analyze the effects of nano-silica, fly ash, and combined nano-silica and fly ash additives on the velocity and volume fraction profiles of the cement suspension. According to the parametric study presented here, larger nano-silica content results in lower centerline velocity of the cement suspension and larger non-uniformity of the volume fraction. Compared to nano-silica, fly ash exhibits an opposite effect on the velocity. Larger fly ash content results in higher centerline velocity, while the effect of the fly ash on the volume fraction is not obvious. For cement suspension containing combined nano-silica and fly ash additives, nano-silica plays a dominant role in the flow behavior of the suspension. The findings of the study can help the design and operation of the pulsating flow of fresh cement mortars and concrete in the 3D printing industry. 
    more » « less
  4. Abstract Early‐age hydration of cement is enhanced by slightly soluble mineral additives (ie, fillers, such as quartz and limestone). However, few studies have attempted to systematically compare the effects of different fillers on cementitious hydration rates, and none have quantified such effects using fillers with comparable, size‐classified particle size distributions (PSDs). This study examines the influence of size‐classified fillers [ie, limestone (CaCO3), quartz (SiO2), corundum (Al2O3), and rutile (TiO2)] on early‐age hydration kinetics of tricalcium silicate (C3S) using a combination of experimental methods, while also employing a modified phase boundary and nucleation and growth model. In prior studies, wherein fillers with broad PSDs were used, it has been reported that between quartz and limestone, the latter is a superior filler due to its ability to partake in anion‐exchange reactions with C‐S‐H. Contrary to prior investigations, this study shows that when size‐classified andarea matchedfillers are used—which, essentially, eliminate degrees of freedom associated with surface area and agglomeration of filler particulates—the filler effect of quartz is broadly similar to that of limestone as well as rutile. Results also show that unlike quartz, limestone, and rutile—which enhance C3S hydration kinetics—corundum suppresses hydration of C3S during the first several hours after mixing. Such deceleration in C3S hydration kinetics is attributed to the adsorption of aluminate anions—released from corundum's dissolution—onto anhydrous particulates’ surfaces, which impedes both the dissolution of C3S and heterogeneous nucleation of C‐S‐H. 
    more » « less
  5. Although the high efficiency of coupled lithium and saturated metakaolin in alkali-silica reaction mitigation has been documented, its influence on cement hydration remains uninvestigated. In this study, saturated metakaolin with varying degrees of saturation and its combined influence with lithium on the hydration kinetics, phase evolution, and development of microstructure and molecular structures of hydration products in the blended cement composite was investigated. The experimental and thermodynamic modeling results indicate the synergistic effect between saturated metakaolin and lithium in enhancing the hydration of cement, interaction between metakaolin and cement, incorporation of Al in the silicate chains, and precipitations of Al-rich phases. In the blended cement matrix, the dissolution of metakaolin, formation of calcium silicate hydrates with incorporated aluminum (C-(A)-S-H), and precipitation of strätlingite are improved by 19.6%, 17.6%, and 20.0%, respectively, and the formation of cubic siliceous hydrogarnet was triggered. 
    more » « less