skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Understanding Local Adaptation to Prepare Populations for Climate Change
Abstract Adaptation within species to local environments is widespread in nature. Better understanding this local adaptation is critical to conserving biodiversity. However, conservation practices can rely on species’ trait averages or can broadly assume homogeneity across the range to inform management. Recent methodological advances for studying local adaptation provide the opportunity to fine-tune efforts for managing and conserving species. The implementation of these advances will allow us to better identify populations at greatest risk of decline because of climate change, as well as highlighting possible strategies for improving the likelihood of population persistence amid climate change. In the present article, we review recent advances in the study of local adaptation and highlight ways these tools can be applied in conservation efforts. Cutting-edge tools are available to help better identify and characterize local adaptation. Indeed, increased incorporation of local adaptation in management decisions may help meet the imminent demands of managing species amid a rapidly changing world.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
36 to 47
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem. 
    more » « less
  2. Abstract

    Despite extensive recommendations for adapting conservation to climate change, limited knowledge exists about how practitioners aim to respond. To address this gap, we analyzed proposals for on‐the‐ground climate adaptation projects submitted by US conservation non‐profits, which play a central role in conserving biodiversity. We assessed 415 proposals submitted between 2011 and 2015 to the Wildlife Conservation Society's Climate Adaptation Fund, a US‐based fund focused solely on adaptation for wildlife and ecosystems. We evaluated the distribution of proposed projects across conservation targets, strategies, and activities, and their geographic alignment with climate impacts. Proposals most often targeted river and riparian ecosystems, fish, and birds. Attention on amphibians and invertebrates was disproportionately low relative to their climate vulnerability. Proposals commonly included efforts to restore previous structures and functions, while relatively few described facilitating change (e.g., supporting future‐adapted species). Proposal density was highest along the Atlantic and Pacific coasts, geographically aligned with non‐profit density and public opinion on climate change. There was no geographic alignment between exposure and proposed responses to five of six climate threats (warming, aridity, wildfire, inland flooding, sea level rise). Our findings identify gaps in adaptation attention, and can enhance strategic resource allocation, targeted capacity building, and adaptation outcomes for conservation.

    more » « less
  3. Abstract

    Recent studies highlight the potential of climate change refugia (CCR) to support the persistence of biodiversity in regions that may otherwise become unsuitable with climate change. However, a key challenge in using CCR for climate resilient management lies in how CCR may intersect with existing forest management strategies, and subsequently influence how landscapes buffer species from negative impacts of warming climate. We address this challenge in temperate coastal forests of the Pacific Northwestern United States, where declines in the extent of late‐successional forests have prompted efforts to restore old‐growth forest structure. One common approach for doing so involves selectively thinning forest stands to enhance structural complexity. However, dense canopy is a key forest feature moderating understory microclimate and potentially buffering organisms from climate change impacts, raising the possibility that approaches for managing forests for old‐growth structure may reduce the extent and number of CCR. We used remotely sensed vegetation indices to identify CCR in an experimental forest with control and thinned (restoration) treatments, and explored the influence of biophysical variables on buffering capacity. We found that remotely sensed vegetation indices commonly used to identify CCR were associated with understory temperature and plant community composition, and thus captured aspects of landscape buffering that might instill climate resilience and be of interest to management. We then examined the interaction between current restoration strategies and CCR, and found that selective thinning for promoting old‐growth structure had only very minor, if any, effects on climatic buffering. In all, our study demonstrates that forest management approaches aimed at restoring old‐growth structure through targeted thinning do not greatly decrease buffering capacity, despite a known link between dense canopy and CCR. More broadly, this study illustrates the value of using remote sensing approaches to identify CCR, facilitating the integration of climate change adaptation with other forest management approaches.

    more » « less
  4. Abstract

    Recent advances in high‐frequency environmental sensing and statistical approaches have greatly expanded the breadth of knowledge regarding aquatic ecosystem metabolism—the measurement and interpretation of gross primary productivity (GPP) and ecosystem respiration (ER). Aquatic scientists are poised to take advantage of widely available datasets and freely‐available modeling tools to apply functional information gained through ecosystem metabolism to help inform environmental management. Historically, several logistical and conceptual factors have limited the widespread application of metabolism in management settings. Benefitting from new instrumental and modeling tools, it is now relatively straightforward to extend routine monitoring of dissolved oxygen (DO) to dynamic measures of aquatic ecosystem function (GPP and ER) and key physical processes such as gas exchange with the atmosphere (G). We review the current approaches for using DO data in environmental management with a focus on the United States, but briefly describe management frameworks in Europe and Canada. We highlight new applications of diel DO data and metabolism in regulatory settings and explore how they can be applied to managing and monitoring ecosystems. We then review existing data types and provide a short guide for implementing field measurements and modeling of ecosystem metabolic processes using currently available tools. Finally, we discuss research needed to overcome current conceptual limitations of applying metabolism in management settings. Despite challenges associated with modeling metabolism in rivers and lakes, rapid developments in this field have moved us closer to utilizing real‐time estimates of GPP, ER, and G to improve the assessment and management of environmental change.

    This article is categorized under:

    Water and Life > Nature of Freshwater Ecosystems

    Water and Life > Conservation, Management, and Awareness

    more » « less
  5. Protected areas are a critical tool for managing and ensuring the persistence of species biodiversity and land conservation. Their spatial extents are used to measure progress towards land protections by several international targets. However, governance type, management, and enforcement of these protected areas vary sub-nationally, and can influence the efficacy of the designation. Simultaneously, climatic conditions are coupled with species resilience, and changes in climate can be associated with shifts, expansions, and contractions of viable areas for habitat maintenance. Climate change is expected to change baseline climatic conditions globally and is likely to limit the benefits of terrestrial protected areas. Improved understanding of the relationship between governance, regional climate change, and protected areas can further enhance tracking of land cover change and inform protection strategies implemented across spatial scales. To aid in informed decision making at sub-national scales, we combine information on terrestrial sites in the World Database on Protected Areas, historic and future climate projections from CMIP6, and remotely sensed data on vegetation cover (NDVI). We leverage categorical differences in protected area management, as well as climate anomalies through time to explore their relationship to land cover change, and create additional tools for risk assessment that may be used in conjunction with local governance processes 
    more » « less