skip to main content

Title: Continent-wide tree fecundity driven by indirect climate effects
Abstract

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1637522 1655896 1745496 1636476 1637685 2025755 1637686
Publication Date:
NSF-PAR ID:
10214735
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Observational studies have not yet shown that environmental variables can explain pervasive nonlinear patterns of species abundance, because those patterns could result from (indirect) interactions with other species (e.g., competition), and models only estimate direct responses. The experiments that could extract these indirect effects at regional to continental scales are not feasible. Here, a biophysical approach quantifies environment– species interactions (ESI) that govern community change from field data. Just as species interactions depend on population abundances, so too do the effects of environment, as when drought is amplified by competition. By embedding dynamic ESI within framework that admits data gathered on different scales, we quantify responses that are induced indirectly through other species, including probabilistic uncertainty in parameters, model specification, and data. Simulation demonstrates that ESI are needed for accurate interpretation. Analysis demonstrates how nonlinear responses arise even when their direct responses to environment are linear. Applications to experimental lakes and the Breeding Bird Survey (BBS) yield contrasting estimates of ESI. In closed lakes, interactions involving phytoplankton and their zooplankton grazers play a large role. By contrast, ESI are weak in BBS, as expected where year-to-year movement degrades the link between local population growth and species interactions. In both cases,more »nonlinear responses to environmental gradients are induced by interactions between species. Stability analysis indicates stability in the closed-system lakes and instability in BBS. The probabilistic framework has direct application to conservation planning that must weigh risk assessments for entire habitats and communities against competing interests.

    « less
  2. Abstract Background and Aims

    Understanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow–fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico.

    Methods

    We analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016.

    Key Results

    The previously identified growth–survival trade-off was not observed. Instead, we identified a fecundity–growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shiftmore »from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time.

    Conclusions

    Our study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions.

    « less
  3. Abstract

    Legacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wetmore »and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.

    « less
  4. Abstract

    Savannah Sparrows (Passerculus sandwichensis) and Tree Swallows (Tachycineta bicolor) breed and forage in the same habitat on Kent Island, a boreal island in the Bay of Fundy, New Brunswick, but respond differently to the same weather conditions. The 2 passerines are similar in body size but because Tree Swallows depend upon small flying insects captured on the wing, they may be more sensitive to weather than Savannah Sparrows, which forage on insects and seeds on the ground and in shrubs and trees. To compare how reproductive success in the 2 species was affected by weather conditions, we took advantage of an 18-year dataset and used a model-building approach that controlled for year, adult sex and age, and field where they nested. We focused on 3 measures of reproductive success (hatching success, fledging success, and nestling condition) and different time periods (3- to 18-day time windows) before hatching or fledging. The responses of the 2 species differed in magnitude and direction. In Tree Swallows, adding weather variables to the basic model increased the explanatory power of fixed effects by 19.1%, illustrating the swallows’ sensitivity to weather. In contrast, in Savannah Sparrows, the addition of weather variables only increased the model’smore »explanatory power by 0.4% and the proportion of variation attributed to fixed factors by only 1.5%, which reflected the species’ hardiness in the face of inclement weather. Our results suggest that how a bird species forages and the nature of its prey may influence its sensitivity to weather and indicate that increased rainfall, strong winds and other events associated with climate change may affect Tree Swallows and other aerial insectivores more than ground-foraging birds such as Savannah Sparrows.

    « less
  5. Abstract

    Forests play a critical role in mitigating climate change, and, at the same time, are predicted to experience large-scale impacts of climate change that will affect the efficiency of forests in mitigation efforts. Projections of future carbon sequestration potential typically do not account for the changing economic costs of timber and agricultural production and land use change. We integrated a dynamic forward-looking economic optimization model of global land use with results from a dynamic global vegetation model and meta-analysis of climate impacts on crop yields to project future carbon sequestration in forests. We find that the direct impacts of climate change on forests, represented by changes in dieback and forest growth, and indirect effects due to lost crop productivity, together result in a net gain of 17 Gt C in aboveground forest carbon storage from 2000 to 2100. Increases in climate-driven forest growth rates will result in an 81%–99% reduction in costs of reaching a range of global forest carbon stock targets in 2100, while the increases in dieback rates are projected to raise the costs by 57%–132%. When combined, these two direct impacts are expected to reduce the global costs of climate change mitigation in forests by moremore »than 70%. Inclusion of the third, indirect impact of climate change on forests through reduction in crop yields, and the resulting expansion of cropland, raises the costs by 11%–38% and widens the uncertainty range. While we cannot rule out the possibility of climate change increasing mitigation costs, the central outcomes of the simultaneous impacts of climate change on forests and agriculture are 64%–86% reductions in the mitigation costs. Overall, the results suggest that concerns about climate driven dieback in forests should not inhibit the ambitions of policy makers in expanding forest-based climate solutions.

    « less