skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Relationship Between Maturation Size and Maximum Tree Size From Tropical to Boreal Climates
ABSTRACT The fundamental trade‐off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade‐off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non‐proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.  more » « less
Award ID(s):
1754435 2224776 1754647 2244711 2306198 1754668 2325527 2211767 2211766 1754632
PAR ID:
10550496
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
9
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract All species must partition resources among the processes that underly growth, survival, and reproduction. The resulting demographic trade‐offs constrain the range of viable life‐history strategies and are hypothesized to promote local coexistence. Tropical forests pose ideal systems to study demographic trade‐offs as they have a high diversity of coexisting tree species whose life‐history strategies tend to align along two orthogonal axes of variation: a growth–survival trade‐off that separates species with fast growth from species with high survival and a stature–recruitment trade‐off that separates species that achieve large stature from species with high recruitment. As these trade‐offs have typically been explored for trees ≥1 cm dbh, it is unclear how species' growth and survival during earliest seedling stages are related to the trade‐offs for trees ≥1 cm dbh. Here, we used principal components and correlation analyses to (1) determine the main demographic trade‐offs among seed‐to‐seedling transition rates and growth and survival rates from the seedling to overstory size classes of 1188 tree species from large‐scale forest dynamics plots in Panama, Puerto Rico, Ecuador, Taiwan, and Malaysia and (2) quantify the predictive power of maximum dbh, wood density, seed mass, and specific leaf area for species' position along these demographic trade‐off gradients. In four out of five forests, the growth–survival trade‐off was the most important demographic trade‐off and encompassed growth and survival of both seedlings and trees ≥1 cm dbh. The second most important trade‐off separated species with relatively fast growth and high survival at the seedling stage from species with relatively fast growth and high survival ≥1 cm dbh. The relationship between seed‐to‐seedling transition rates and these two trade‐off aces differed between sites. All four traits were significant predictors for species' position along the two trade‐off gradients, albeit with varying importance. We concluded that, after accounting for the species' position along the growth–survival trade‐off, tree species tend to trade off growth and survival at the seedling with later life stages. This ontogenetic trade‐off offers a mechanistic explanation for the stature–recruitment trade‐off that constitutes an additional ontogenetic dimension of life‐history variation in species‐rich ecosystems. 
    more » « less
  2. Abstract Forests play a crucial role providing ecosystem services to humans, yet many aspects of forest dynamics remain unknown. One key area is how climate change might impact reproduction of tree species. While most studies have focused on predicting tree growth, understanding how reproduction may change will be vital to forecasting future forest communities. Of particular interest is the relationship between annual growth and reproductive output, which has often been hypothesized as a trade‐off between allocating resources to growth or to reproduction. Two proposed pathways of this trade‐off, resource accumulation, that is, storage of resources over time, and resource allocation, that is, same year allocation of resources to reproduction, have been widely explored in relation to masting events. It has also been proposed that there is no internal trade‐off between the two functions, but rather there exists one or more climate variables that are intrinsically linked to both, that is, the weather hypothesis. In this study, we use 15 years of dendrochronological data and seed rain collections from forest stands at two latitudes to determine whether one or more of these strategies are taking place in two commonly occurring tree species: red maple,Acer rubrum; and sugar maple,Acer saccharum. We found evidence of a trade‐off in both species. We also found a combination of strategies was the norm, and there appeared to be evidence to also support the weather hypothesis. However, in both species, the strategy which dictated the trade‐off switched between the northern and southern regions, indicating a degree of plasticity that could be beneficial under changing environmental conditions. By identifying the ways in which growth and reproduction are connected and how these connections vary between different populations, we can gain insights into how trees allocate resources in response to changing conditions. 
    more » « less
  3. Abstract Age and size at maturity are key life‐history components, yet the proximate underpinnings that mediate intra‐ and interspecific variation in life history remain poorly understood. We studied the proximate underpinnings of species differences and nutritionally plastic variation in adult size and development time in four species of dung beetles. Specifically, we investigated how variation in insect growth mediates adult size variation, tested whether fast juvenile growth trades‐off with developmental stability in adult morphology and quantified plastic responses of digestive systems to variation in food quality. Contrary to the common size–development time trade‐off, the largest species exhibited by far the shortest development time. Correspondingly, species diverged strongly in the shape of growth trajectories. Nutritionally plastic adjustments to growth were qualitatively similar between species but differed in magnitude. Although we expected rapid growth to induce developmental costs, neither instantaneous growth rates nor the duration of larval growth were related to developmental stability in the adult. This renders the putative costs of rapid growth enigmatic. We further found that larvae that encounter a challenging diet develop a larger midgut and digest more slowly than animals reared on a more nutritious diet. These data are consistent with the hypothesis that larvae invest into a more effective digestive system when exposed to low‐quality nutrition, but suggest that species may diverge readily in their reliance on these mechanisms. More generally, our data highlight the complex, and often hidden, relationships between immature growth and age and size at maturation even in ecologically similar species. 
    more » « less
  4. Muñoz, Martha (Ed.)
    Abstract Selective pressures favor morphologies that are adapted to distinct ecologies, resulting in trait partitioning among ecomorphotypes. However, the effects of these selective pressures vary across taxa, especially because morphology is also influenced by factors such as phylogeny, body size, and functional trade-offs. In this study, we examine how these factors impact functional diversification in mammals. It has been proposed that trait partitioning among mammalian ecomorphotypes is less pronounced at small body sizes due to biomechanical, energetic, and environmental factors that favor a “generalist” body plan, whereas larger taxa exhibit more substantial functional adaptations. We title this the Divergence Hypothesis (DH) because it predicts greater morphological divergence among ecomorphotypes at larger body sizes. We test DH by using phylogenetic comparative methods to examine the postcranial skeletons of 129 species of taxonomically diverse, small-to-medium-sized (<15 kg) mammals, which we categorize as either “tree-dwellers” or “ground-dwellers.” In some analyses, the morphologies of ground-dwellers and tree-dwellers suggest greater between-group differentiation at larger sizes, providing some evidence for DH. However, this trend is neither particularly strong nor supported by all analyses. Instead, a more pronounced pattern emerges that is distinct from the predictions of DH: within-group phenotypic disparity increases with body size in both ground-dwellers and tree-dwellers, driven by morphological outliers among “medium”-sized mammals. Thus, evolutionary increases in body size are more closely linked to increases in within-locomotor-group disparity than to increases in between-group disparity. We discuss biomechanical and ecological factors that may drive these evolutionary patterns, and we emphasize the significant evolutionary influences of ecology and body size on phenotypic diversity. 
    more » « less
  5. Abstract Species often respond to human‐caused climate change by shifting where they occur on the landscape. To anticipate these shifts, we need to understand the forces that determine where species currently occur. We tested whether a long‐hypothesised trade‐off between climate and competitive constraints explains where tree species grow on mountain slopes. Using tree rings, we reconstructed growth sensitivity to climate and competition in range centre and range margin tree populations in three climatically distinct regions. We found that climate often constrains growth at environmentally harsh elevational range boundaries, and that climatic and competitive constraints trade‐off at large spatial scales. However, there was less evidence that competition consistently constrained growth at benign elevational range boundaries; thus, local‐scale climate‐competition trade‐offs were infrequent. Our work underscores the difficulty of predicting local‐scale range dynamics, but suggests that the constraints on tree performance at a large‐scale (e.g. latitudinal) may be predicted from ecological theory. 
    more » « less