skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The exoplanet perspective on future ice giant exploration
Exoplanets number in their thousands, and the number is ever increasing with the advent of new surveys and improved instrumentation. One of the most surprising things we have learnt from these discoveries is not that small-rocky planets in their stars habitable zones are likely to be common, but that the most typical size of exoplanets is that not seen in our solar system—radii between that of Neptune and the Earth dubbed mini-Neptunes and super-Earths. In fact, a transiting exoplanet is four times as likely to be in this size regime than that of any giant planet in our solar system. Investigations into the atmospheres of giant hydrogen/helium dominated exoplanets has pushed down to Neptune and mini-Neptune-sized worlds revealing molecular absorption from water, scattering and opacity from clouds, and measurements of atmospheric abundances. However, unlike measurements of Jupiter, or even Saturn sized worlds, the smaller giants lack a ground truth on what to expect or interpret from their measurements. How did these sized worlds form and evolve and was it different from their larger counterparts? What is their internal composition and how does that impact their atmosphere? What informs the energy budget of these distant worlds? In this we discuss what characteristics we can measure for exoplanets, and why a mission to the ice giants in our solar system is the logical next step for understanding exoplanets. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.  more » « less
Award ID(s):
1903811
PAR ID:
10214801
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
378
Issue:
2187
ISSN:
1364-503X
Page Range / eLocation ID:
20200054
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Neptune Odyssey mission concept is a Flagship-class orbiter and atmospheric probe to the Neptune–Triton system. This bold mission of exploration would orbit an ice-giant planet to study the planet, its rings, small satellites, space environment, and the planet-sized moon Triton. Triton is a captured dwarf planet from the Kuiper Belt, twin of Pluto, and likely ocean world. Odyssey addresses Neptune system-level science, with equal priorities placed on Neptune, its rings, moons, space environment, and Triton. Between Uranus and Neptune, the latter is unique in providing simultaneous access to both an ice giant and a Kuiper Belt dwarf planet. The spacecraft—in a class equivalent to the NASA/ESA/ASI Cassini spacecraft—would launch by 2031 on a Space Launch System or equivalent launch vehicle and utilize a Jupiter gravity assist for a 12 yr cruise to Neptune and a 4 yr prime orbital mission; alternatively a launch after 2031 would have a 16 yr direct-to-Neptune cruise phase. Our solution provides annual launch opportunities and allows for an easy upgrade to the shorter (12 yr) cruise. Odyssey would orbit Neptune retrograde (prograde with respect to Triton), using the moon's gravity to shape the orbital tour and allow coverage of Triton, Neptune, and the space environment. The atmospheric entry probe would descend in ∼37 minutes to the 10 bar pressure level in Neptune's atmosphere just before Odyssey's orbit-insertion engine burn. Odyssey's mission would end by conducting a Cassini-like “Grand Finale,” passing inside the rings and ultimately taking a final great plunge into Neptune's atmosphere. 
    more » « less
  2. Abstract The recent JWST detections of carbon-bearing molecules in a habitable-zone sub-Neptune have opened a new era in the study of low-mass exoplanets. The sub-Neptune regime spans a wide diversity of planetary interiors and atmospheres not witnessed in the solar system, including mini-Neptunes, super-Earths, and water worlds. Recent works have investigated the possibility of gas dwarfs, with rocky interiors and thick H2-rich atmospheres, to explain aspects of the sub-Neptune population, including the radius valley. Interactions between the H2-rich envelope and a potential magma ocean may lead to observable atmospheric signatures. We report a coupled interior-atmosphere modeling framework for gas dwarfs to investigate the plausibility of magma oceans on such planets and their observable diagnostics. We find that the surface–atmosphere interactions and atmospheric composition are sensitive to a wide range of parameters, including the atmospheric and internal structure, mineral composition, volatile solubility and atmospheric chemistry. While magma oceans are typically associated with high-temperature rocky planets, we assess if such conditions may be admissible and observable for temperate sub-Neptunes. We find that a holistic modeling approach is required for this purpose and to avoid unphysical model solutions. Using our model framework, we consider the habitable-zone sub-Neptune K2-18 b as a case study and find that its observed atmospheric composition is incompatible with a magma ocean scenario. We identify key atmospheric molecular and elemental diagnostics, including the abundances of CO2, CO, NH3, and, potentially, S-bearing species. Our study also underscores the need for fundamental material properties for accurate modeling of such planets. 
    more » « less
  3. Abstract The impact of the inner structure and thermal history of planets on their observable features, such as luminosity or magnetic field, crucially depends on the poorly known heat and charge transport properties of their internal layers. The thermal and electric conductivities of different phases of water (liquid, solid, and super-ionic) occurring in the interior of ice giant planets, such as Uranus or Neptune, are evaluated from equilibrium ab initio molecular dynamics, leveraging recent progresses in the theory and data analysis of transport in extended systems. The implications of our findings on the evolution models of the ice giants are briefly discussed. 
    more » « less
  4. Abstract It remains to be ascertained whether sub-Neptune exoplanets primarily possess hydrogen-rich atmospheres or whether a population of H2O-rich water worlds lurks in their midst. Addressing this question requires improved modeling of water-rich exoplanetary atmospheres, both to predict and interpret spectroscopic observations and to serve as upper boundary conditions on interior structure calculations. Here, we present new models of hydrogen-helium-water atmospheres with water abundances ranging from solar to 100% water vapor. We improve upon previous models of high-water-content atmospheres by incorporating updated prescriptions for water self-broadening and a nonideal gas equation of state. Our model grid (https://umd.box.com/v/water-worlds) includes temperature–pressure profiles in radiative-convective equilibrium, along with their associated transmission and thermal emission spectra. We find that our model updates primarily act at high pressures, significantly impacting bottom-of-atmosphere temperatures, with implications for the accuracy of interior structure calculations. Upper-atmosphere conditions and spectroscopic observables are less impacted by our model updates, and we find that, under most conditions, retrieval codes built for hot Jupiters should also perform well on water-rich planets. We additionally quantify the observational degeneracies among both thermal emission and transmission spectra. We recover standard degeneracies with clouds and mean molecular weight for transmission spectra, and we find thermal emission spectra to be more readily distinguishable from one another in the water-poor (i.e., near-solar) regime. 
    more » « less
  5. null (Ed.)
    Uranus and Neptune form a distinct class of planets in our Solar System. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review, we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets’ internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’. 
    more » « less