- Award ID(s):
- 0825490
- NSF-PAR ID:
- 10214823
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 282
- Issue:
- 1819
- ISSN:
- 0962-8452
- Page Range / eLocation ID:
- 20151887
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Coral reefs are among the most diverse and complex ecosystems in the world that provide important ecological and economical services. Increases in sea surface temperature linked to global climate change threatens these ecosystems by inducing coral bleaching. However, it is not fully known if natural intra- or inter-annual physiological variability is linked to bleaching resilience or recovery capacity of corals. Here, we monitored the coral physiology of three common Caribbean species ( Porites divaricata, Porites astreoides, Orbicella faveolata ) at six time points over 2 years by measuring the following traits: calcification, biomass, lipids, proteins, carbohydrates, chlorophyll a , algal endosymbiont density, stable carbon isotopes of the host and endosymbiotic algae, and the stable carbon and oxygen isotopes of the skeleton. The overall physiological profile of all three species varied over time and that of P. divaricata was consistently different from the two other coral species. Porites divaricata had higher energy reserves coupled with higher contributions of heterotrophically derived carbon to host tissues than both P. astreoides and O. faveolata . Consistently higher overall energy reserves and heterotrophic contributions to tissues appear to buffer against environmental stress, including bleaching events. Thus, natural physiological variability among coral species appears to be a stronger predictor of coral bleaching resilience than intra- or inter-annual physiological variability within a coral species.more » « less
-
null (Ed.)Stony coral tissue loss disease (SCTLD) was first observed in the United States Virgin Islands in January 2019 on a reef at Flat Cay off the island of St. Thomas. A year after its emergence, the disease had spread to several reefs around St. Thomas causing significant declines in overall coral cover. Rates of tissue loss are an important metric in the study of coral disease ecology, as they can inform many aspects of etiology such as disease susceptibility and resistance among species, and provide critical parameters for modeling the effects of disease among heterogenous reef communities. The present study quantified tissue loss rates attributed to SCTLD among six abundant reef building species ( Colpophyllia natans, Montastraea cavernosa, Diploria labyrinthiformis, Pseudodiploria strigosa, Orbicella annularis , and Porites astreoides ). Field-based 3D models of diseased corals, taken approximately weekly, indicated that the absolute rates of tissue loss from SCTLD slowed through time, corresponding with the accumulation of thermal stress that led to mass bleaching. Absolute tissue loss rates were comparable among species prior to the bleaching event but diverged during and remained different after the bleaching event. Proportional tissue loss rates did not vary among species or through time, but there was considerable variability among M. cavernosa colonies. SCTLD poses a significant threat to reefs across the Caribbean due to its persistence through time, wide range of susceptible coral species, and unprecedented tissue loss rates. Intervention and management efforts should be increased during and immediately following thermal stress events in order maximize resource distribution when disease prevalence is decreased.more » « less
-
Abstract Mass thermal bleaching events are a primary threat to coral reefs, yet the sublethal impacts, particularly on energetics and reproduction, are poorly characterized. Given that the persistence of coral populations is contingent upon the reproduction of individuals that survive disturbances, there is an urgent need to understand the sublethal effects of bleaching on reproductive output to accurately predict coral recovery rates. In 2019, the French Polynesian island of Mo’orea experienced a severe mass bleaching event accompanied by widespread coral mortality. At the most heavily impacted sites, we observed
Acropora hyacinthus individuals that were resistant to bleaching, alongside colonies that bleached but showed signs of symbiont recovery shortly after the bleaching event. We collected fragments fromA. hyacinthus colonies five months post-bleaching and, using energetic assays and histological measurements, examined the physiological and reproductive consequences of these two distinct heat stress responses. Despite healthy appearances in both resistant and recovered corals, we found that recovered colonies had significantly reduced energy reserves compared to resistant colonies. In addition, we detected compound effects of stress on reproduction: recovered colonies displayed both a lower probability of containing gametes and lower fecundity per polyp. Our results indicate that bleaching inflicts an energetic constraint on the concurrent re-accumulation of energy reserves and development of reproductive material, with decreased reproductive potential of survivors possibly hampering overall reef resilience. These findings highlight the presence of intraspecific responses to bleaching and the importance of considering multiple trajectories for individual species when predicting population recovery following disturbance. -
Abstract Identifying which factors lead to coral bleaching resistance is a priority given the global decline of coral reefs with ocean warming. During the second year of back‐to‐back bleaching events in the Florida Keys in 2014 and 2015, we characterized key environmental and biological factors associated with bleaching resilience in the threatened reef‐building coral
Orbicella faveolata . Ten reefs (five inshore, five offshore, 179 corals total) were sampled during bleaching (September 2015) and recovery (May 2016). Corals were genotyped with 2bRAD and profiled for algal symbiont abundance and type.O. faveolata at the inshore sites, despite higher temperatures, demonstrated significantly higher bleaching resistance and better recovery compared to offshore. The thermotolerantDurusdinium trenchii (formerlySymbiondinium trenchii ) was the dominant endosymbiont type region‐wide during initial (78.0% of corals sampled) and final (77.2%) sampling; >90% of the nonbleached corals were dominated byD. trenchii . 2bRAD host genotyping found no genetic structure among reefs, but inshore sites showed a high level of clonality. While none of the measured environmental parameters were correlated with bleaching, 71% of variation in bleaching resistance and 73% of variation in the proportion ofD. trenchii was attributable to differences between genets, highlighting the leading role of genetics in shaping natural bleaching patterns. Notably,D. trenchii was rarely dominant inO. faveolata from the Florida Keys in previous studies, even during bleaching. The region‐wide high abundance ofD. trenchii was likely driven by repeated bleaching associated with the two warmest years on record for the Florida Keys (2014 and 2015). On inshore reefs in the Upper Florida Keys,O. faveolata was most abundant, had the highest bleaching resistance, and contained the most corals dominated byD. trenchii , illustrating a causal link between heat tolerance and ecosystem resilience with global change. -
Abstract Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) and
CO 2partial pressures ( 2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data andp COIPCC AR 5 ensemble climate model data. Three of the four most abundant species,Orbicella faveolata, Montastraea cavernosa, andPorites astreoides , had negative calcification responses to both elevated temperature and 2. In the business‐as‐usualp COCO 2emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates.Siderastrea siderea , the other most common species, was insensitive to both temperature and 2within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reducedp COCO 2emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species likeS. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reducedCO 2emissions can limit future declines in reef calcification.