skip to main content


Title: Extraction of Total Soluble Lipid from Ground Coral Samples
This method is adapted and updated from methods originally published in Grottoli et al. (2004) and is based on the original methods of Folch & Stanley (1957), and Bligh & Dyer (1959). There are five parts to extracting lipids from ground corals: 1) grind and sub-sample the coral and store at -80 °C until ready to extract, 2) freeze-dry the sample, 3) extract the lipids from the freeze-dried samples, 4) standardize the lipid concentration to ash-free dry weight (AFDW), and 5) resuspend the extracted lipid for long-term storage and possible later analysis of lipid classes or isotopes. The lipid extraction procedure must be conducted in a fume hood with the sash as low as possible with the researcher wearing protective eyewear, gloves, and lab coat at all times. Important considerations regarding lipid analysis were gained from reading Chapter 1.3 “Lipid extraction, storage, and sample handling” from the textbook Lipid Analysis by Christie (2003). This method was originally developed by Andréa Grottoli and refined by Rowan McLachlan (06-11-18) with the guidance of Dr. Agus Muñoz-Garcia at The Ohio State University. This protocol was written by Rowan McLachlan (03-12-2020). dx.doi.org/10.17504/protocols.io.bc4qiyvw  more » « less
Award ID(s):
1838667
NSF-PAR ID:
10214894
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Protocolsio
ISSN:
2473-1838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This method for extracting protein from ground coral samples is based on the Bradford assay for the colorimetric detection and quantification of total protein (Bradford, 1976) and is compared to a known standard dilution of bovine serum albumin (BSA). Pierce Inc. and Bio-Rad have developed the reagents and standards necessary for completing the extraction. There are five parts to quantifying total soluble protein in ground corals: 1) grind and sub-sample the coral and store at -80 °C until ready to extract, 2) solubilize protein via cell disruption [detergent lysis and freeze-thaw lysis], 3) separate the dissolved protein from tissue and skeletal particles, 4) quantify the protein concentration via Bradford microassay procedure, and 5) standardize the protein concentration to ashfree dry weight (AFDW). This method was originally developed by Rowan McLachlan with the assistance of Jamie Price and Kerri Dobson and with the guidance of Dr. Noah Weisleder and Andréa Grottoli at The Ohio State University. This protocol was written by Rowan McLachlan and reviewed by all co-authors. dx.doi.org/10.17504/protocols.io.bdc8i2zw 
    more » « less
  2. null (Ed.)
    This protocol outlines a method for quantifying the density of Symbiodiniaceae cells in Scleractinian coral samples which have been previously ground into a homogenous paste consisting of aragonite skeleton, coral host tissue and endosymbiotic Symbiodiniaceae cells. There are four parts to quantifying Symbiodiniaceae cell density from ground corals: 1) grind and sub-sample the coral and store at -80 °C until ready to extract, 2) separate Symbiodiniaceae cells from the coral skeleton, 3) image Symbiodiniaceae fluorescence using Countess™ II FL Automated Cell Counter, and 4) quantify cells using the software ImageJ. Note: a CY5 EVOS™ light cube is required for this method. For instructions on installing the CY5 EVOS™ light cube to your Countess™ II FL Cell Counter, see page 40 of the Countess™ II FL Cell Counter user manual. This method was originally developed by Rowan McLachlan in February 2020. Claire Juracka assisted Rowan McLachlan by conducting tests to compare this method to the traditional method using a hemocytometer and microscope. The traditional cell counting method has been reported in several publications by Grottoli's team (e.g., Rodrigues & Grottoli 2007). This protocol was written by Rowan McLachlan with the guidance of Dr. Andréa Grottoli at The Ohio State University. dx.doi.org/10.17504/protocols.io.bdc5i2y6 
    more » « less
  3. Elucidation of complex molecular networks requires integrative analysis of molecular features and changes at different levels of information flow and regulation. Accordingly, high throughput functional genomics tools such as transcriptomics, proteomics, metabolomics, and lipidomics have emerged to provide system-wide investigations. Unfortunately, analysis of different types of biomolecules requires specific sample extraction procedures in combination with specific analytical instrumentation. The most efficient extraction protocols often only cover a restricted type of biomolecules due to their different physicochemical properties. Therefore, several sets/aliquots of samples are needed for extracting different molecules. Here we adapted a biphasic fractionation method to extract proteins, metabolites, and lipids from the same sample (3-in-1) for liquid chromatography-tandem mass spectrometry (LC-MS/MS) multi-omics. To demonstrate utility of the improved method, we used bacteria-primed Arabidopsis leaves to generate multi-omics datasets from the same sample. In total, we were able to analyze 1849 proteins, 1967 metabolites, and 424 lipid species in single samples. The molecules cover a wide range of biological and molecular processes, and allow quantitative analyses of different molecules and pathways. Our results have shown the clear advantages of the multi-omics method, including sample conservation, high reproducibility, and tight correlation between different types of biomolecules. 
    more » « less
  4. null (Ed.)
    This protocol outlines a method for quantifying the total biomass of Scleractinian coral samples which have been ground into a homogenous paste consisting of aragonite skeleton, coral host tissue, and endosymbiotic Symbiodiniaceae cells. There are four parts to quantifying total biomass: 1) grind coral fragments into a homogenous paste, 2) partition the biomass subsample, 3) quantify the ash-free dry weight [AFDW], and 4) standardize AFDW to the colony surface area. This method has been reported in several publications by Grottoli's team (e.g., Rodrigues & Grottoli 2007). This protocol was written by Rowan McLachlan (03-19-20) and was reviewed by all co-authors. dx.doi.org/10.17504/protocols.io.bdyai7se 
    more » « less
  5. Persistent cold temperatures, a paucity of nutrients, freeze-thaw cycles, and the strongly seasonal light regime make Antarctica one of Earth’s least hospitable surface environments for complex life. Cyanobacteria, however, are well-adapted to such conditions and are often the dominant primary producers in Antarctic inland water environments. In particular, the network of meltwater ponds on the ‘dirty ice’ of the McMurdo Ice Shelf is an ecosystem with extensive cyanobacteria-dominated microbial mat accumulations. This study investigated intact polar lipids (IPLs), heterocyte glycolipids (HGs), and bacteriohopanepolyols (BHPs) in combination with 16S and 18S rRNA gene diversity in microbial mats of twelve ponds in this unique polar ecosystem. To constrain the effects of nutrient availability, temperature and freeze-thaw cycles on the lipid membrane composition, lipids were compared to stromatolite-forming cyanobacterial mats from ice-covered lakes in the McMurdo Dry Valleys as well as from (sub)tropical regions and hot springs. The 16S rRNA gene compositions of the McMurdo Ice Shelf mats confirm the dominance of Cyanobacteria and Proteobacteria while the 18S rRNA gene composition indicates the presence of Ochrophyta, Chlorophyta, Ciliophora, and other microfauna. IPL analyses revealed a predominantly bacterial community in the meltwater ponds, with archaeal lipids being barely detectable. IPLs are dominated by glycolipids and phospholipids, followed by aminolipids. The high abundance of sugar-bound lipids accords with a predominance of cyanobacterial primary producers. The phosphate-limited samples from the (sub)tropical, hot spring, and Lake Vanda sites revealed a higher abundance of aminolipids compared to those of the nitrogen-limited meltwater ponds, affirming the direct affects that N and P availability have on IPL compositions. The high abundance of polyunsaturated IPLs in the Antarctic microbial mats suggests that these lipids provide an important mechanism to maintain membrane fluidity in cold environments. High abundances of HG keto-ols and HG keto-diols, produced by heterocytous cyanobacteria, further support these findings and reveal a unique distribution compared to those from warmer climates. 
    more » « less