skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Single crystal neutron and magnetic measurements of Rb 2 Mn 3 (VO 4 ) 2 CO 3 and K 2 Co 3 (VO 4 ) 2 CO 3 with mixed honeycomb and triangular magnetic lattices
Two new alkali vanadate carbonates with divalent transition metals have been synthesized as large single crystals via a high-temperature (600 °C) hydrothermal technique. Compound I , Rb 2 Mn 3 (VO 4 ) 2 CO 3 , crystallizes in the trigonal crystal system in the space group P 3̄1 c , and compound II , K 2 Co 3 (VO 4 ) 2 CO 3 , crystallizes in the hexagonal space group P 6 3 / m . Both structures contain honeycomb layers and triangular lattices made from edge-sharing MO 6 octahedra and MO 5 trigonal bipyramids, respectively. The honeycomb and triangular layers are connected along the c -axis through tetrahedral [VO 4 ] groups. The MO 5 units are connected with each other by carbonate groups in the ab -plane by forming a triangular magnetic lattice. The difference in space groups between I and II was also investigated with Density Functional Theory (DFT) calculations. Single crystal magnetic characterization of I indicates three magnetic transitions at 77 K, 2.3 K, and 1.5 K. The corresponding magnetic structures for each magnetic transition of I were determined using single crystal neutron diffraction. At 77 K the compound orders in the MnO 6 -honeycomb layer in a Néel-type antiferromagnetic orientation while the MnO 5 triangular lattice ordered below 2.3 K in a colinear ‘up–up–down’ fashion, followed by a planar ‘Y’ type magnetic structure. K 2 Co 3 (VO 4 ) 2 CO 3 ( II ) exhibits a canted antiferromagnetic ordering below T N = 8 K. The Curie–Weiss fit (200–350 K) gives a Curie–Weiss temperature of −42 K suggesting a dominant antiferromagnetic coupling in the Co 2+ magnetic sublattices.  more » « less
Award ID(s):
1808371
PAR ID:
10215109
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
49
Issue:
14
ISSN:
1477-9226
Page Range / eLocation ID:
4323 to 4335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The synthesis, crystal structure determination, magnetic properties and bonding interaction analysis of a novel 3 d transition-metal complex, [CrBr 2 (NCCH 3 ) 4 ](Br 3 ), are reported. Single-crystal X-ray diffraction results show that [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) crystallizes in space group C 2/ m (No. 12) with a symmetric tribromide anion and the powder X-ray diffraction results show the high purity of the material specimen. X-ray photoelectron studies with a combination of magnetic measurements demonstrate that Cr adopts the 3+ oxidation state. Based on the Curie–Weiss analysis of magnetic susceptibility data, the Néel temperature is found to be around 2.2 K and the effective moment (μ eff ) of Cr 3+ in [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) is ∼3.8 µ B , which agrees with the theoretical value for Cr 3+ . The direct current magnetic susceptibility of the molecule shows a broad maximum at ∼2.3 K, which is consistent with the theoretical Néel temperature. The maximum temperature, however, shows no clear frequency dependence. Combined with the observed upturn in heat capacity below 2.3 K and the corresponding field dependence, it is speculated that the low-temperature magnetic feature of a broad transition in [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) could originate from a crossover from high spin to low spin for the split d orbital level low-lying states rather than a short-range ordering solely; this is also supported by the molecular orbital diagram obtained from theoretical calculations. 
    more » « less
  2. Abstract

    Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1.

     
    more » « less
  3. Abstract

    A new cage-structured compound—HfMn2Zn20—belonging to theAB2C20 (A, B= transition or rare earth metals, andC= Al, Zn, or Cd) family of structures has been synthesized via the self-flux method. The new compound crystallizes in the space group Fd3¯m with lattice parameter a≈14.0543(2) Å (Z= 8) and exhibits non-stoichiometry due to Mn/Zn mixing on the Mn-site and an underoccupied Hf-site. The structure refines to Hf0.93Mn1.63Zn20.37and follows lattice size trends when compared to other HfM2Zn20(M= Fe, Co, and Ni) structures. The magnetic measurements show that this compound displays a modified Curie-Weiss behavior with a transition temperature around 22 K. The magnetization shows no saturation, a small magnetic moment, and near negligible hysteresis, all signs of itinerant magnetism. The Rhodes–Wohlfarth ratio and the spin fluctuation parameters ratio both confirm the itinerant nature of the magnetism in HfMn2Zn20.

     
    more » « less
  4. We constructed the magnetic field-temperature phase diagrams of new quasi-two-dimensional isosceles triangular lattice antiferromagnets (TLAF) Ca 3 MNb 2 O 9 (M=Co, Ni) from dc and ac magnetic susceptibilities, specific heat, dielectric constant, and electric polarization measurements on single crystalline samples. Ca 3 CoNb 2 O 9 with effective spin-1/2 Co 2+ ions undergoes a two-step antiferromagnetic phase transition at T N1 = 1.3 K and T N2 = 1.5 K and enters a stripe ordered state at zero magnetic field. With increasing field, successive magnetic phase transitions, reminiscent of the up-up-down ( uud ) and the oblique phases, are observed. The dielectric constant of Ca 3 CoNb 2 O 9 shows anomalies related to the magnetic phase transitions, but clear evidence of ferroelectricity is absent. Meanwhile, Ca 3 NiNb 2 O 9 with spin-1 Ni 2+ ions also shows a two-step antiferromagnetic transition at T N1 = 3.8 K and T N2 = 4.2 K at zero field. For Ca 3 NiNb 2 O 9 , the electric polarization in the magnetic ordered phases was clearly observed from the pyroelectric current measurements, which indicates its coexistence of magnetic ordering and ferroelectricity. 
    more » « less
  5. Abstract As described in the Introduction, we became interested in the existing literature for the crystallization behavior of (±)-[Co(en) 3 ]I 3 ·H 2 O and the absolute configuration of its enantiomers because of our project on the historical sequence of chemical studies leading Werner to formulate his Theory of Coordination Chemistry. In so doing, we discovered a number of interesting facts, including the possibility that the published “ Pbca ” structure of the (±)-[Co(en) 3 ]I 3 ·H 2 O was incorrect, and that it really crystallizes as a kryptoracemate in space group P 2 1 2 1 2 1 . Other equally interesting facts concerning the crystallization behavior of [Co(en) 3 ]I 3 ·H 2 O are detailed below, together with an explanation why P laton incorrectly selects, in this case, the space group Pbca instead of the correct choice, P 2 1 2 1 2 1 . As for the Flack parameter, (±)-[Co(en) 3 ]I 3 ·H 2 O provides an example long sought by Flack himself – a challenging case, differing from the norm. For that purpose, data sets (for the pure enantiomer and for the racemate) were collected at 100 K with R -factors of 4.24 and 2.82%, respectively, which are ideal for such a test. The fact that Pbca is unacceptable in this case is documented by the results of Second-Harmonic Generation experiments. CCDC nos: 1562401 for compound (I) and 1562403 for compound (II). 
    more » « less