skip to main content


Title: Geochemical and textural investigations of the Eoarchean Ukaliq supracrustals, Northern Québec (Canada)
Structural, geochronological and geochemical studies of pre-3.75 Ga rocks of volcano-sedimentary protoliths in the Inukjuak domain in the Superior Province in Québec have been mostly focused on the Nuvvuagittuq Supracrustal Belt (NSB). The Porpoise Cove outcrops – at the southwestern limit of the NSB – are the de-facto “type locality” for the supracrustals of the Inukjuak Complex. Yet, it remains unclear whether the NSB rocks are geochemically distinct from, or are in fact common to, a host of other supracrustal enclaves locked in the dominantly gneissic Inukjuak domain. Here, we report detailed textural and geochemical studies for a suite of rocks from the Ukaliq Supracrustal Belt (USB), located approximately 3 km northeast of the NSB. We find that the USB and NSB have a similar protracted metamorphic history; both experienced amphibolite grade metamorphism and contain granitoid gneiss sheets, quartz-magnetite rocks (banded iron-formation s.l.) and quartz-biotite schists within amphibolitized rocks of basaltic affinity with local retrogressions. If the various Inukjuak supracrustal belts were once a part of a larger coherent (now dismembered) terrane, they should show similar emplacement ages and source chemistry. New zircon Usingle bondPb geochronology from five gneissic units and two quartz-biotite (metasedimentary) schists reveal the oldest emplacement ages across all units of each individual rock type to be 3.68 ± 0.07 Ga (granitoid gneisses) and 3.65 ± 0.06 Ga (quartz-biotite schists). These new ages are similar to those documented as likely minimum emplacement ages of the NSB determined by Usingle bondPb geochronology. Zircons from the quartz-biotite schist were also analyzed by ion microprobe for their Usingle bondPb geochronology and were found to yield statistically identical, albeit more precise, ages than those obtained by LA-ICP-MS. Possible detrital zircons from the USB quartz-biotite schists were analyzed by ion microprobe for their coupled δ30SiNBS28 and δ18OVSMOW values with respective values between −0.75 and − 0.07‰ (δ30SiNBS28), and + 5.61 and + 6.59‰ (δ18OVSMOW). The δ18OVSMOW values, which are on average above mantle-derived zircon, indicate contribution of altered, non-mantle, derived material into the source of the rocks that weathered to form the quartz-biotite schists. Zircon mineral inclusions (quartz, feldspar, apatite, biotite, muscovite and other unrecognized Fe/Al/Si rich phases), along with the major- and trace element contents for the rocks were analyzed to substantiate this interpretation. Together with δ30SiNBS28, δ18OVSMOW, our results suggest that lithologies like authigenic silica and serpentinized rocks re-melted to form the parent melts that gave rise to zircons found in the USB quartz-biotite schists. Additional Lusingle bondHf studies reported here on the same zircons also show similarities with NSB zircons. The εHf values showed a positive correlation with the measured Usingle bondPb age from −22.7 ± 0.8 to +1.9 ± 1.1. The Lusingle bondHf system also reveals that the USB, extracted at ca. 3.8 Ga, carries isotopic signatures of an older Hadean reservoir, having been formed from an Eoarchean mafic melt that incorporated them. Taken together, this supports a co-genetic origin for the NSB and the USB.  more » « less
Award ID(s):
1650033
NSF-PAR ID:
10215207
Author(s) / Creator(s):
Date Published:
Journal Name:
Lithos
Volume:
372-373
Issue:
105673
ISSN:
0024-4937
Page Range / eLocation ID:
1-20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Garnet–kyanite–staurolite assemblages with large, late porphyroblasts of amphibole form garbenschists in Ordovician volcaniclastic rocks lying immediately south of the Pearya terrane on northernmost Ellesmere Island, Canada. The schist, which together with carbonate olistoliths makes up the Petersen Bay Assemblage (PBA), displays a series of parallel isograds that mark an increase in metamorphic grade over a distance of 10 km towards the contact with Pearya; however, a steep, brittle Cenozoic strike-slip fault with an unknown amount displacement disturbs the earlier accretionary relationship. The late amphibole growth, probably due to fluid ingress, is clear evidence of disequilibrium conditions in the garbenschist. In order to recover the P–T history of the schists, we construct isochemical phase equilibrium models for a nearby garnet–mica schist that escaped the fluid event and compare the results to quartz inclusion in garnet (QuiG) barometry for a garbenschist and the metapelitic garnet schist. Quartz inclusions are confined to garnet cores and the QuiG results, combined with Ti-in-biotite and garnet–biotite thermometry, delineate a prograde path from 480 to 600°C and 0.7 to 0.9 GPa. This path agrees with growth zoning in garnet deduced from X-ray maps of the spessartine component in garnet. The peak conditions obtained from pseudosection modelling using effective bulk composition and the intersection of garnet rim with matrix biotite and white mica isopleths in the metapelite are 665°C at ≤0.85 GPa. Three generations of monazite (I, II and III) were identified by textural characterization, geochemical composition (REE and Y concentrations) and U–Pb ages measured by ion microprobe. Monazite I occurs in the matrix and as inclusions in garnet rims and grew at peak P–T conditions at 397 ± 2 Ma (2σ) from the breakdown of allanite. Monazite II forms overgrowths on matrix Monazite I grains that are oriented parallel to the main schistosity and yield ages of 385 ± 2 Ma. Monazite III, found only in the garbenschist, is 374 ± 6 Ma, which is interpreted as the time of amphibole growth during fluid infiltration at lower temperature and pressure on a clockwise P–T path that remained in the kyanite stability field. These results point to a relatively short (≈12 Myr) Barrovian metamorphic event that affected the schists of the PBA. An obvious heat source is lacking in the adjacent Pearya terrane, but we speculate it was large Devonian plutons—similar to the 390 ± 10 Ma Cape Woods granite located 40 km across strike from the fault—that have been excised by strike-slip. Arc fragments that are correlative to the PBA are low grade; they never saw the heat and were not directly involved in Pearya accretion. 
    more » « less
  2. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks with geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates. 
    more » « less
  3. PhD Dissertation Abstract: The imposing andesite stratovolcano is the characteristic expression of subduction zone magmatism, posing hazards to coastal populations and bearing insight into deep Earth processes. On a map of a typical volcanic arc, one can easily distinguish the approximately linear alignment and regular spacing of these major edifices that stand out from a diffuse distribution of mafic volcanoes (e.g. the Quaternary Cascades; Hildreth, 2007). The andesitic composite volcanoes have a reputation for being complex, open systems: crystal zoning “stratigraphies,” diverse crystal cargoes including antecrysts or xenocrysts, quenched magmatic inclusions, and variations in isotopic signatures are among the many lines of evidence that these systems involve a variety of igneous processes and melt sources. To investigate the development and evolution of such transcrustal magma factories, I have conducted a detailed temporal, spatial, and geochemical characterization of a long-lived arc volcanic center in the southern Washington Cascades, the Goat Rocks volcanic complex. Results from ⁴⁰Ar/³⁹Ar and U/Pb geochronology constrain the lifespan of the Goat Rocks volcanic complex from ~3.1 Ma to ~100 ka. During this time, four major composite volcanoes were built (as well as several smaller volcanoes). From oldest to youngest, these are Tieton Peak, Bear Creek Mountain, Lake Creek volcano, and Old Snowy Mountain. Four volcanic stages are defined based on the lifespans of these centers and distinct compositional changes that occur from one to the next: Tieton Peak stage (3.1-2.6 Ma), Bear Creek Mountain stage (1.6-1.1 Ma), Lake Creek stage (1.1 Ma to 456 ka), and Old Snowy Mountain stage (440 ka to 115 ka). Two lava flow remnants also have ages in the interim between Tieton Peak stage and Bear Creek Mountain stage (2.3 Ma and 2.1 Ma), and their sources are not yet identified. The ages of the Bear Creek Mountain and Lake Creek stages in fact overlap, and the gap between Lake Creek stage and Old Snowy Mountain stage is only on the order of 10⁴ years. Based on supporting compositional evidence, the Bear Creek Mountain, Lake Creek, and Old Snowy Mountain stage volcanoes are considered to be the migrating surface expressions of a continuous magmatic system that was active over at least ~1.5 million years. It remains uncertain whether the gaps between the Tieton Peak stage, scattered early Pleistocene andesites, and Bear Creek Mountain stage are due to incomplete exposure/sampling or real quiescent periods earlier in the development of the Goat Rocks volcanic complex. Throughout the construction of the andesitic complex, mafic volcanoes were active on its periphery. These include the Miriam Creek volcano (~3.6-3.1 Ma), Devils Washbasin volcano (3.0-2.7 Ma), Hogback Mountain (1.1 Ma – 891 ka), Lakeview Mountain (194 ka), and Walupt Lake volcano (65 ka). Two basalt and basaltic andesite units (Qob₁ and Qob₂, 1.4 and 1.3 Ma; Hammond, 2017) also erupted from the Goat Rocks area, likely an older incarnation of Hogback Mountain. The suite of mafic magmas erupted in this region are all calcalkaline basalt (or basaltic andesite; CAB), but two compositional groups emerge from the trace element and isotopic data. Group 1 is LILE and LREE-enriched, with higher ⁸⁷Sr/⁸⁶Sr isotopes, and includes compositions from Devils Washbasin, Lower Hogback Mountain, and Lakeview Mountain. Group 2 is less enriched in LILE and LREE and lower in ⁸⁷Sr/⁸⁶Sr, and includes the compositions of Miriam Creek, Qob1, Upper Hogback Mountain, Walupt Lake, and Coleman Weedpatch. The two groups are recurrent through time and with no geographic distinction; in fact, both types were tapped by the Hogback Mountain volcano. Together both of these groups, alongside CABs from Mount Adams and various basalts from Mount St. Helens, form a compositional array between the basalts of the High Cascades and the intraplate-type basalts (IPB) of Mount Adams and Simcoe volcanic field. These results lead to three conclusions. 1) Variably subduction-modified mantle is distributed across the region, perhaps either as stratified layers or a web-like network of fluid pathways amongst less metasomatized mantle. 2) Transitional compositions between the IPBs and typical “High Cascades” CAB/HAOT signature suggest a broader influence of the mantle domain that feeds IPBs—if asthenospheric mantle through a slab window, as suggested by Mullen et al. (2017), then perhaps it bleeds in smaller quantities over a broader area. This compositional trend solidifies the interpretation of the southern Washington Cascades as a unique and coherent “segment” of the arc (the Washington segment of Pitcher and Kent, 2019). 3) The recurrence of variable mafic magma types through time, and with no geographic boundaries, indicates that the compositional evolution of the Goat Rocks volcanic complex was not likely driven by a change in mafic input. Indeed, the Sr, Nd, Hf, and Pb isotope ratios of the intermediate to felsic suite are closely aligned with the local basalts and suggest a limited role of crustal assimilation. Importantly, several mineral thermometers (zircon, ilmenite-magnetite pairs, and amphibole) align in recording higher crystallization temperatures in Bear Creek Mountain to early Lake Creek time, a cooling trend through the Lake Creek stage, and a more diverse range of temperatures in the transition to Old Snowy Mountain stage. Thus, it is suggested that the compositional evolution at Goat Rocks represents a thermal cycle of waxing and waning magmatic flux: where the period of Bear Creek Mountain to early Lake Creek volcanism was the climactic phase of a vertically extensive magma homogenization factory, then the system waned and cooled, ultimately losing its ability to filter, homogenize, and enrich magmas. 
    more » « less
  4. Abstract

    In ancient or partially eroded arc sections, a protracted history of tectonism and deformation makes interpretation of local volcanic-plutonic relationships challenging. The fragmentary preservation of volcanic rocks relative to the extensive plutonic record in upper-crustal arc sections also suggests that a broader-scale approach that includes volcanic-hypabyssal-plutonic “fields” is useful. In this context, studies of hypabyssal intrusions emplaced at the intersection of volcanic and plutonic fields provide additional physical and chemical constraints on shallow-level magmatic processes. New mapping, U-Pb zircon geochronology, and geochemistry at Tioga Pass, in the central Sierra Nevada arc section, document the physical and chemical evolution of the Tioga Pass hypabyssal complex, a ca. 100 Ma system that includes an intrusive dacite-rhyolite porphyry unit and comagmatic Tioga Lake quartz monzodiorite. We interpret these units as a Cretaceous subvolcanic magma feeder system intruding a package of tectonically displaced Triassic and Jurassic volcanic and sedimentary rocks, rather than the previous interpretation of a Triassic caldera. The Tioga Pass magmatic system is a well-exposed example of a hypabyssal complex with meso- to micro-scale structures that are consistent with rapid cooling and emplacement between 0–6 km depth and compositions suggestive of extensive fractionation of largely mantle-derived magma. The Tioga Pass porphyry unit is one of many hypabyssal intrusions scattered along a ~50-kilometer-wide belt of the east-central Sierra Nevada that are spatially associated with coeval volcanic and plutonic rocks due to tectonic downward transfer of arc crust. They provide a valuable perspective of shallow magmatic processes that may be used to test upper-crustal plutonic-volcanic links in tectonically reorganized arc sections.

     
    more » « less
  5. Abstract The Bishop Tuff (BT), erupted from the Long Valley caldera in California, displays two types of geochemical gradients with temperature: one is related to magma mixing, whereas the other is found in the high-SiO2 rhyolite portion of the Bishop Tuff and is characterized by twofold or lower concentration variations in minor and trace elements that are strongly correlated with temperature. It is proposed that the latter zonation, which preceded phenocryst growth, developed as a result of mineral–melt partitioning between interstitial melt and surrounding crystals in a parental mush, from which variable melt fractions were segregated. To test this hypothesis, trends of increasing vs decreasing element concentrations with temperature (as a proxy for melt fraction), obtained from published data on single-clast pumice samples from the high-SiO2 rhyolite portion of the Bishop Tuff, were used to infer their relative degrees of incompatibility vs compatibility between crystals and melt in the parental mush. Relative compatibility values (RCVi) for all elements i, defined as the concentration slope with temperature divided by average concentration, are shown to be linearly correlated with their respective bulk partition coefficients (bulk Di). Mineral–melt partition coefficients from the literature were used to constrain the average stoichiometry of the crystallization/melting reaction in the parental mush: 32 % quartz + 34 % plagioclase + 31 % K-feldspar + 1·60 % biotite + 0·42 % titanomagnetite + 0·34 % ilmenite + 0·093 % allanite + 0·024 % zircon + 0·025 % apatite = 100 % liquid. The proportions of tectosilicates in the reaction (i.e. location of eutectic) are consistent with depths of melt segregation of ~400–550 MPa and an activity of H2O of ~0·4–0·6. Temperatures of <770–780 °C are constrained by allanite in the reaction. Evidence that a fluid phase was present in the parental mush is seen in the decreasing versus increasing H2O and CO2 contents with temperature in the segregated interstitial melt that formed the high-SiO2 rhyolite portion of the Bishop Tuff. The presence of an excess fluid phase, which strongly partitions CO2 relative to the melt, is required to explain the compatible behavior of CO2, whereas the fluid abundance must have been low to explain the incompatible behavior of H2O. Calculated degassing paths for interstitial melts, which segregated from the parental mush and ascended to shallower depths to grow phenocrysts, match published volatile analyses in quartz-hosted melt inclusions and constrain fluid abundances in the mush to be ≤1 wt%. The source of volatiles in the parental mush, irrespective of whether it formed by crystallization or partial melting, must have been primarily from associated basalts, as granitoid crust is too volatile poor. Approximately twice as much basalt as rhyolite is needed to provide the requisite volatiles. The determination of bulk Di for several elements gives the bulk composition of the parental leucogranitic mush and shows that it is distinct from Mesozoic Sierran arc granitoids, as expected. Collectively, the results from this study provide new constraints for models of the complex, multi-stage processes throughout the Plio-Quaternary, involving both mantle-derived basalt and pre-existing crust, that led to the origin of the parental body to the Bishop Tuff. 
    more » « less