skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generalization of Intrinsic Orbitals to Kramers-Paired Quaternion Spinors, Molecular Fragments, and Valence Virtual Spinors
Localization of molecular orbitals finds its importance in the representation of chemical bonding (and anti-bonding) and in the local correlation treatments beyond mean-field approximation. In this paper, we generalize the intrinsic atomic and bonding orbitals [G. Knizia, J. Chem. Theory Comput. 2013, 9, 11, 4834-4843] to relativistic applications using complex and quaternion spinors, as well as to molecular fragments instead of atomic fragments only. By performing a singular value decomposition, we show how localized valence virtual orbitals can be expressed in this intrinsic minimal basis. We demonstrate our method on systems of increasing complexity, starting from simple cases such as benzene, acrylic-acid and ferrocene molecules, and then demonstrating the use of molecular fragments and inclusion of relativistic effects for complexes containing heavy elements such as tellurium, iridium and astatine. The aforementioned scheme is implemented into a standalone program interfaced with several different quantum chemistry packages.  more » « less
Award ID(s):
1945276
PAR ID:
10215308
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Chemical Theory and Computation
ISSN:
1549-9618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The covalent interaction of N-heterocyclic carbenes (NHCs) with transition metal atoms gives rise to distinctive frontier molecular orbitals (FMOs). These emergent electronic states have spurred the widespread adoption of NHC ligands in chemical catalysis and functional materials. Although formation of carbene-metal complexes in self-assembled monolayers on surfaces has been explored, design and electronic structure characterization of extended low-dimensional NHC-metal lattices remains elusive. Here we demonstrate a modular approach to engineering one-dimensional (1D) metal-organic chains and two-dimensional (2D) Kagome lattices using the FMOs of NHC–Au–NHC junctions to create low-dimensional molecular networks exhibiting intrinsic metallicity. Scanning tunneling spectroscopy and first-principles density functional theory reveal the contribution of C–Au–C π-bonding states to dispersive bands that imbue 1D- and 2D-NHC lattices with exceptionally small work functions. 
    more » « less
  2. The concept of metalla-aromaticity proposed by Thorn–Hoffmann ( Nouv. J. Chim . 1979, 3, 39) has been expanded to organometallic molecules of transition metals that have more than one independent electron-delocalized system. Lanthanides, with highly contracted 4f atomic orbitals, are rarely found in multiply aromatic systems. Here we report the discovery of a doubly aromatic triatomic lanthanide-boron molecule PrB 2 − based on a joint photoelectron spectroscopy and quantum chemical investigation. Global minimum structural searches reveal that PrB 2 − has a C 2v triangular structure with a paramagnetic triplet 3 B 2 electronic ground state, which can be viewed as featuring a trivalent Pr(III,f 2 ) and B 2 4− . Chemical bonding analyses show that this cyclo-PrB 2 − species is the smallest 4f-metalla-aromatic system exhibiting σ and π double aromaticity and multiple Pr–B bonding characters. It also sheds light on the formation of the rare B 2 4− tetraanion by the high-lying 5d orbitals of the 4f-elements, completing the isoelectronic B 2 4− , C 2 2− , N 2 , and O 2 2+ series. 
    more » « less
  3. null (Ed.)
    An ab initio molecular dynamics investigation of the solvent effect (water) on the structural parameters, 195 Pt NMR spin–spin coupling constants (SSCCs) and chemical shifts of a series of pyridonate-bridged Pt III dinuclear complexes is performed using Kohn–Sham (KS) Car–Parrinello molecular dynamics (CPMD) and relativistic hybrid KS NMR calculations. The indirect solvent effect ( via structural changes) has a dramatic effect on the 1 J PtPt SSCCs. The complexes exhibit a strong trans influence in solution, where the Pt–Pt bond lengthens with increasing axial ligand σ-donor strength. In the diaqua complex, where the solvent effect is more pronounced, the SSCCs averaged for CPMD configurations with explicit plus implicit solvation agree much better with the experimental data, while the calculations for static geometry and CPMD unsolvated configurations show large deviations with respect to experiment. The combination of CPMD with hybrid KS NMR calculations provides a much more realistic computational model that reproduces the large magnitudes of 1 J PtPt and 195 Pt chemical shifts. An analysis of 1 J PtPt in terms of localized and canonical orbitals shows that the SSCCs are driven by changes in the s-character of the natural atomic orbitals of Pt atoms, which affect the 'Fermi contact' mechanism. 
    more » « less
  4. null (Ed.)
    Abstract Bonding in the ground state of C $${}_{2}$$ 2 is still a matter of controversy, as reasonable arguments may be made for a dicarbon bond order of $$2$$ 2 , $$3$$ 3 , or $$4$$ 4 . Here we report on photoelectron spectra of the C $${}_{2}^{-}$$ 2 − anion, measured at a range of wavelengths using a high-resolution photoelectron imaging spectrometer, which reveal both the ground $${X}^{1}{\Sigma}_{\mathrm{g}}^{+}$$ X 1 Σ g + and first-excited $${a}^{3}{\Pi}_{{\mathrm{u}}}$$ a 3 Π u electronic states. These measurements yield electron angular anisotropies that identify the character of two orbitals: the diffuse detachment orbital of the anion and the highest occupied molecular orbital of the neutral. This work indicates that electron detachment occurs from predominantly $$s$$ s -like ( $$3{\sigma}_{\mathrm{g}}$$ 3 σ g ) and $$p$$ p -like ( $$1{\pi }_{{\mathrm{u}}}$$ 1 π u ) orbitals, respectively, which is inconsistent with the predictions required for the high bond-order models of strongly $$sp$$ s p -mixed orbitals. This result suggests that the dominant contribution to the dicarbon bonding involves a double-bonded configuration, with 2 $$\pi$$ π bonds and no accompanying $$\sigma$$ σ bond. 
    more » « less
  5. Traditional band theory of perfect crystalline solids often uses as input the structure deduced from diffraction experiments; when modeled by the minimal unit cell this often produces a spatially averaged model. The present study illustrates that this is not always a safe practice unless one examines if the intrinsic bonding mechanism is capable of benefiting from the formation of a distribution of lower symmetry local environments that differ from the macroscopically averaged structure. This can happen either due to positional, or due to magnetic symmetry breaking. By removing the constraint of a small crystallographic cell, the energy minimization in the density functional theory finds atomic and spin symmetry breaking, not evident in conventional diffraction experiments but being found by local probes such as atomic pair distribution function analysis. Here we report that large atomic and electronic anomalies in bulk tetragonal FeSe emerge from the existence of distributions of local positional and magnetic moment motifs. The found symmetry broken motifs obtained by minimization of the internal energy represent what chemical bonding in tetragonal phase prefers as an intrinsic energy lowering (stabilizing) static distortions. This explains observations of band renormalization, predicts orbital order and enhanced nematicity, and provides unprecedented close agreement with spectral function measured by photoemission and local atomic environment revealed by pair distribution function. While the symmetry-restricted strong correlation approach has been argued previously to be the exclusive theory needed for describing the main peculiarities of FeSe, we show here that the symmetry-broken mean-field approach addresses numerous aspects of the problem, provides intuitive insight into the electronic structure, and opens the door for large-scale mean-field calculations for similar d-electron quantum materials. 
    more » « less