skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controlled hierarchical self-assembly of networked coordination nanocapsules via the use of molecular chaperones
Supramolecular chaperones play an important role in directing the assembly of multiple protein subunits and redox-active metal ions into precise, complex and functional quaternary structures. Here we report that hydroxyl tailed C -alkylpyrogallol[4]arene ligands and redox-active Mn II ions, with the assistance of proline chaperone molecules, can assemble into two-dimensional (2D) and/or three-dimensional (3D) networked nanocapsules. Dimensionality is controlled by coordination between the exterior of nanocapsule subunits, and endohedral functionalization within the 2D system is achieved via chaperone guest encapsulation. The tailoring of surface properties of nanocapsules via coordination chemistry is also shown as an effective method for the fine-tuning magnetic properties, and electrochemical and spectroscopic studies support that the nanocapsule is an effective homogeneous water-oxidation electrocatalyst, operating at pH 6.07 with an exceptionally low overpotential of 368 mV.  more » « less
Award ID(s):
1825352
PAR ID:
10215643
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
46
ISSN:
2041-6520
Page Range / eLocation ID:
12547 to 12552
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carman, George M (Ed.)
    Coenzyme Q (CoQ) is a redox-active lipid molecule that acts as an electron carrier in the mitochondrial electron transport chain. In Saccharomyces cerevisiae, CoQ is synthesized in the mitochondrial matrix by a multi-subunit protein-lipid complex termed the CoQ synthome, the spatial positioning of which is coordinated by the Endoplasmic Reticulum-Mitochondria Encounter Structure (ERMES). The MDM12 gene encoding the cytosolic subunit of ERMES, is co-expressed with COQ-10, which encodes the putative CoQ chaperone Coq10, via a shared bidirectional promoter. Deletion of COQ10 results in respiratory deficiency, impaired CoQ biosynthesis, and reduced spatial coordination between ERMES and the CoQ Synthome. While Coq10 protein content is maintained upon deletion of MDM12, we show that deletion of COQ10 by replacement with a HIS3 marker results in diminished Mdm12 protein content. Since deletion of individual ERMES subunits prevents ERMES formation, we asked whether some or all of the phenotypes associated with COQ10 deletion result from ERMES dysfunction. To identify the phenotypes resulting solely due to the loss of Coq10, we constructed strains expressing a functionally impaired (coq10-L96S) or truncated (coq10-R147*) Coq10 isoform using CRISPR-Cas9. We show that both coq10 mutants preserve Mdm12 protein content and exhibit impaired respiratory capacity like the coq10Δ mutant, indicating that Coq10’s function is vital for respiration regardless of ERMES integrity. Moreover, the maintenance of CoQ synthome stability and efficient CoQ biosynthesis observed for the coq10-R147* mutant suggests these deleterious phenotypes in the coq10Δ mutant result from ERMES disruption. Overall, this study clarifies the role of Coq10 in modulating CoQ biosynthesis. 
    more » « less
  2. Cyclic voltammetry was applied to investigate the permselective properties of electrode-supported ion-exchange polymer films intended for use in future molecular-scale spectroscopic studies of bipolar membranes. The ability of thin ionomer film assemblies to exclude mobile ions charged similarly to the polymer (co-ions) and accumulate ions charged opposite to the polymer (counterions) was scrutinized through use of the diffusible redox probe molecules [Ru(NH3)6]3+and [IrCl6]2−. With the anion exchange membrane (AEM) phase supported on a carbon disk electrode, bipolar junctions formed by addition of a cation exchange membrane (CEM) overlayer demonstrated high selectivity toward redox ion extraction and exclusion. For junctions formed using a Fumion®AEM phase and a Nafion®overlayer, [IrCl6]2−ions exchanged into Fumion®prior to Nafion®overcoating remained entrapped and the Fumion®excluded [Ru(NH3)6]3+ions for durability testing periods of more than 20 h under conditions of interest for eventualin situspectral measurements. Experiments with the Sustainion®anion exchange ionomer uncovered evidence for [IrCl6]2−ion coordination to pendant imidazolium groups on the polymer. A cyclic voltammetric method for estimation of the effective diffusion coefficient and equilibrium extraction constant for redox active probe ions within inert, uniform density electrode-supported thin films was applied to examine charge transport mechanisms. 
    more » « less
  3. Abstract Iron oxide is commonly found in natural or industrial glass compositions and can exist as ferrous (Fe2+) or ferric (Fe3+) species, with their ratios depending on glass composition, temperature, pressure and the redox reactions during the glass forming process. The iron redox ratio plays an important role on silicate glass structures and consequently various properties. This work aims to study the effect of iron oxide, and particularly the iron redox ratio, on the structures of borosilicate and boroaluminosilicate glasses using molecular dynamics simulations with newly developed iron potential parameters that are compatible with the borosilicate potentials. The results provide detailed cation coordination states of both iron species and the effect of redox ratio on boron coordination and other structural features. Particularly, competition for charge compensating modifier cations (such as Na+) among the fourfold‐coordinated cations such as B3+, Al3+, and Fe3+is investigated by calculating the cation–cation pair distribution functions and coordination preferential ratios. The results show that the trivalent ferric ions, with a shorter Fe–O bond distance and better defined first coordiation shell with mainly four‐fold coordination, act as a glass former whereas the divalent ferrous ions mainly play the role of glass modifier. The ferrous/ferric ratio (Fe2+/Fe3+) was found to affect the glass chemistry and hence glass properties by regulating the amount of four‐coordinated boron, the fraction of non‐briding oxygen and other features. The results are compared with available experimental data to gain insights of the complex structures and charge compensation schemes of the glass system. 
    more » « less
  4. null (Ed.)
    Tuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using superatomic blocks could provide a route to encrypt desirable functionality, yet strategies to link the inorganic blocks together in predetermined dimensionality or symmetry are scarce. Here, we describe the synthesis of anisotropic van der Waals crystalline frameworks using the designer superatomic nanocluster Co 3 (py) 3 Co 6 Se 8 L 6 (py = pyridine, L = Ph 2 PN(Tol)), and ditopic linkers. Post-synthetically, the 3D crystals can be mechanically exfoliated into ultrathin flakes (8 to 60 nm), or intercalated with the redox-active guest tetracyanoethylene in a single-crystal-to-single-crystal transformation. Extensive characterization, including by single crystal X-ray diffraction, reveals how intrinsic features of the nanocluster, such as its structure, chirality, redox-activity and magnetic profile, predetermine key properties of the emerging 2D structures. Within the nanosheets, the strict and unusual stereoselectivity of the nanocluster's Co edges for the low symmetry (α,α,β) isomer gives rise to in-plane structural anisotropy, while the helically chiral nanoclusters self-organize into alternating Δ- and Λ-homochiral rows. The nanocluster's high-spin Co edges, and its rich redox profile make the nanosheets both magnetically and electrochemically active, as revealed by solid state magnetic and cyclic voltammetry studies. The length and flexibility of the ditopic linker was varied, and found to have a secondary effect on the structure and stacking of the nanosheets within the 3D crystals. With these results we introduce a deterministic and versatile synthetic entry to programmable functionality and symmetry in 2D superatomic crystals. 
    more » « less
  5. Abstract Oxalate decarboxylase fromBacillus subtilisis a binuclear Mn‐dependent acid stress response enzyme that converts the mono‐anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π‐stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long‐range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5‐hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5‐hydroxytryptophan with its hydroxyl proton removed. 5‐Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N‐terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long‐range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5‐hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins. 
    more » « less