skip to main content

Title: Deep Parametric Model for Discovering Group-cohesive Functional Brain Regions
One of the primary tasks in neuroimaging is to simplify spatiotemporal scans of the brain (i.e., fMRI scans) by partitioning the voxels into a set of functional brain regions. An emerging line of research utilizes multiple fMRI scans, from a group of subjects, to calculate a single group consensus functional partition. This consensus-based approach is promising as it allows the model to improve the signalto-noise ratio in the data. However, existing approaches are primarily non-parametric which poses problems when new samples are introduced. Furthermore, most existing approaches calculate a single partition for multiple subjects which fails to account for the functional and anatomical variability between different subjects. In this work, we study the problem of group-cohesive functional brain region discovery where the goal is to use information from a group of subjects to learn “group-cohesive” but individualized brain partitions for multiple fMRI scans. This problem is challenging since neuroimaging datasets are usually quite small and noisy. We introduce a novel deep parametric model based upon graph convolution, called the Brain Region Extraction Network (BREN). By treating the fMRI data as a graph, we are able to integrate information from neighboring voxels during brain region discovery which helps reduce noise for more » each subject. Our model is trained with a Siamese architecture to encourage partitions that are group-cohesive. Experiments on both synthetic and real-world data show the effectiveness of our proposed approach. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the 2020 SIAM International Conference on Data Mining
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Analysis of time-evolving data is crucial to understand the functioning of dynamic systems such as the brain. For instance, analysis of functional magnetic resonance imaging (fMRI) data collected during a task may reveal spatial regions of interest, and how they evolve during the task. However, capturing underlying spatial patterns as well as their change in time is challenging. The traditional approach in fMRI data analysis is to assume that underlying spatial regions of interest are static. In this article, using fractional amplitude of low-frequency fluctuations (fALFF) as an effective way to summarize the variability in fMRI data collected during a task, we arrange time-evolving fMRI data as a subjects by voxels by time windows tensor, and analyze the tensor using a tensor factorization-based approach called a PARAFAC2 model to reveal spatial dynamics. The PARAFAC2 model jointly analyzes data from multiple time windows revealing subject-mode patterns, evolving spatial regions (also referred to as networks) and temporal patterns. We compare the PARAFAC2 model with matrix factorization-based approaches relying on independent components, namely, joint independent component analysis (ICA) and independent vector analysis (IVA), commonly used in neuroimaging data analysis. We assess the performance of the methods in terms of capturing evolving networks throughmore »extensive numerical experiments demonstrating their modeling assumptions. In particular, we show that (i) PARAFAC2 provides a compact representation in all modes, i.e., subjects, time , and voxels , revealing temporal patterns as well as evolving spatial networks, (ii) joint ICA is as effective as PARAFAC2 in terms of revealing evolving networks but does not reveal temporal patterns, (iii) IVA's performance depends on sample size, data distribution and covariance structure of underlying networks. When these assumptions are satisfied, IVA is as accurate as the other methods, (iv) when subject-mode patterns differ from one time window to another, IVA is the most accurate. Furthermore, we analyze real fMRI data collected during a sensory motor task, and demonstrate that a component indicating statistically significant group difference between patients with schizophrenia and healthy controls is captured, which includes primary and secondary motor regions, cerebellum, and temporal lobe, revealing a meaningful spatial map and its temporal change.« less
  2. In a number of applications, one has access to high-dimensional time series data on several related subjects. A motivating application area comes from the neuroimaging field, such as brain fMRI time series data, obtained from various groups of subjects (cases/controls) with a specific neurological disorder. The problem of regularized joint estimation of multiple related Vector Autoregressive (VAR) models is discussed, leveraging a group lasso penalty in addition to a regular lasso one, so as to increase statistical efficiency of the estimates by borrowing strength across the models. A modeling framework is developed that it allows for both group-level and subject-specific effects for related subjects, using a group lasso penalty to estimate the former. An estimation procedure is introduced, whose performance is illustrated on synthetic data and compared to other state-of-the-art methods. Moreover, the proposed approach is employed for the analysis of resting state fMRI data. In particular, a group-level descriptive analysis is conducted for brain inter-regional temporal effects of Attention Deficit Hyperactive Disorder (ADHD) patients as opposed to controls, with the data available from the ADHD-200 Global Competition repository.
  3. Understanding the intrinsic patterns of human brain is important to make inferences about the mind and brain-behavior association. Electrophysiological methods (i.e. MEG/EEG) provide direct measures of neural activity without the effect of vascular confounds. The blood oxygenated level-dependent (BOLD) signal of functional MRI (fMRI) reveals the spatial and temporal brain activity across different brain regions. However, it is unclear how to associate the high temporal resolution Electrophysiological measures with high spatial resolution fMRI signals. Here, we present a novel interpretable model for coupling the structure and function activity of brain based on heterogeneous contrastive graph representation. The proposed method is able to link manifest variables of the brain (i.e. MEG, MRI, fMRI and behavior performance) and quantify the intrinsic coupling strength of different modal signals. The proposed method learns the heterogeneous node and graph representations by contrasting the structural and temporal views through the mind to multimodal brain data. The first experiment with 1200 subjects from Human connectome Project (HCP) shows that the proposed method outperforms the existing approaches in predicting individual gender and enabling the location of the importance of brain regions with sex difference. The second experiment associates the structure and temporal views between the low-level sensory regionsmore »and high-level cognitive ones. The experimental results demonstrate that the dependence of structural and temporal views varied spatially through different modal variants. The proposed method enables the heterogeneous biomarkers explanation for different brain measurements.« less
  4. Prior papers have explored the functional connectivity changes for patients suffering from major depressive disorder (MDD). This paper introduces an approach for classifying adolescents suffering from MDD using resting-state fMRI. Accurate diagnosis of MDD involves interviews with adolescent patients and their parents, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), behavioral observation as well as the experience of a clinician. Discovering predictive biomarkers for diagnosing MDD patients using functional magnetic resonance imaging (fMRI) scans can assist the clinicians in their diagnostic assessments. This paper investigates various static and dynamic connectivity measures extracted from resting-state fMRI for assisting with MDD diagnosis. First, absolute Pearson correlation matrices from 85 brain regions are computed and they are used to calculate static features for predicting MDD. A predictive sub-network extracted using sub-graph entropy classifies adolescent MDD vs. typical healthy controls with high accuracy, sensitivity and specificity. Next, approaches utilizing dynamic connectivity are employed to extract tensor based, independent component based and principal component based subject specific attributes. Finally, features from static and dynamic approaches are combined to create a feature vector for classification. A leave-one-out cross-validation method is used for the final predictor performance. Out of 49 adolescents withmore »MDD and 33 matched healthy controls, a support vector machine (SVM) classifier using a radial basis function (RBF) kernel using differential sub-graph entropy combined with dynamic connectivity features classifies MDD vs. healthy controls with an accuracy of 0.82 for leave-one-out cross-validation. This classifier has specificity and sensitivity of 0.79 and 0.84, respectively. This performance demonstrates the utility of MRI based diagnosis of psychiatric disorders like MDD using a combination of static and dynamic functional connectivity features of the brain.« less
  5. Brain large-scale dynamics is constrained by the heterogeneity of intrinsic anatomical substrate. Little is known how the spatiotemporal dynamics adapt for the heterogeneous structural connectivity (SC). Modern neuroimaging modalities make it possible to study the intrinsic brain activity at the scale of seconds to minutes. Diffusion magnetic resonance imaging (dMRI) and functional MRI reveals the large-scale SC across different brain regions. Electrophysiological methods (i.e. MEG/EEG) provide direct measures of neural activity and exhibits complex neurobiological temporal dynamics which could not be solved by fMRI. However, most of existing multimodal analytical methods collapse the brain measurements either in space or time domain and fail to capture the spatio-temporal circuit dynamics. In this paper, we propose a novel spatio-temporal graph Transformer model to integrate the structural and functional connectivity in both spatial and temporal domain. The proposed method learns the heterogeneous node and graph representation via contrastive learning and multi-head attention based graph Transformer using multimodal brain data (i.e. fMRI, MRI, MEG and behavior performance). The proposed contrastive graph Transformer representation model incorporates the heterogeneity map constrained by T1-to-T2-weighted (T1w/T2w) to improve the model fit to structurefunction interactions. The experimental results with multimodal resting state brain measurements demonstrate the proposed method couldmore »highlight the local properties of large-scale brain spatio-temporal dynamics and capture the dependence strength between functional connectivity and behaviors. In summary, the proposed method enables the complex brain dynamics explanation for different modal variants.« less