skip to main content


Title: Low-Temperature 2D/2D Ohmic Contacts in WSe 2 Field-Effect Transistors as a Platform for the 2D Metal–Insulator Transition
We report the fabrication of hexagonal-boron-nitride (hBN) encapsulated multi-terminal WSe_2 Hall bars with 2D/2D low-temperature Ohmic contacts as a platform for investigating the two-dimensional (2D) metal-insulator transition. We demonstrate that the WSe_2 devices exhibit Ohmic behavior down to 0.25 K and at low enough excitation voltages to avoid current-heating effects. Additionally, the high-quality hBN-encapsulated WSe_2 devices in ideal Hall-bar geometry enable us to accurately determine the carrier density. Measurements of the temperature (T) and density (n_s) dependence of the conductivity \sigma(T,n_s) demonstrate scaling behavior consistent with a metal-insulator quantum phase transition driven by electron-electron interactions, but where disorder-induced local magnetic moments are also present. Our findings pave the way for further studies of the fundamental quantum mechanical properties of 2D transition metal dichalcogenides using the same contact engineering.  more » « less
Award ID(s):
1707785 1307075 2004445
NSF-PAR ID:
10215944
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
ISSN:
1944-8244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), are an attractive class of single-photon emitters with high brightness, room-temperature operation, site-specific engineering of emitter arrays, and tunability with external strain and electric fields. In this work, we demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators. Through the Purcell effect, high-purity hBN emitters exhibit a cavity-enhanced spectral coupling efficiency up to 46% at room temperature, which exceeds the theoretical limit for cavity-free waveguide-emitter coupling and previous demonstrations by nearly an order-of-magnitude. The devices are fabricated with a CMOS-compatible process and exhibit no degradation of the 2D material optical properties, robustness to thermal annealing, and 100 nm positioning accuracy of quantum emitters within single-mode waveguides, opening a path for scalable quantum photonic chips with on-demand single-photon sources. 
    more » « less
  2. Abstract

    Heat dissipation is a major limitation of high‐performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra‐thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra‐high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single‐layer transition metal dichalcogenides MX2(MoS2, WSe2, WS2) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate‐supported hBN/MX2/hBN heterostructures with varying laser power and temperature, the out‐of‐plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2and hBN reaches 74 ± 25 MW m−2K−1, which is at least ten times higher than the interfacial thermal conductance of MX2in non‐encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra‐high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2/hBN structures and shed light on building novel hBN‐encapsulated nanoelectronic devices with enhanced thermal management.

     
    more » « less
  3. Abstract

    Recently, 2D electron gases have been observed in atomically thin semiconducting crystals, enabling the observation of rich physical phenomena at the quantum level within the ultimate thickness limit. However, the observation of 2D electron gases and subsequent quantum Hall effect require exceptionally high crystalline quality, rendering mechanical exfoliation as the only method to produce high‐quality 2D semiconductors of black phosphorus and indium selenide (InSe), which hinder large‐scale device applications. Here, the controlled one‐step synthesis of high‐quality 2D InSe thin films via chemical vapor transport method is reported. The carrier Hall mobility of hexagonal boron nitride (hBN) encapsulated InSe flakes can be up to 5000 cm2V−1s−1at 1.5 K, enabling to observe the quantum Hall effect in a synthesized van der Waals semiconductor. The existence of the quantum Hall effect in directly synthesized 2D semiconductors indicates a high quality of the chemically synthesized 2D semiconductors, which hold promise in quantum devices and applications with high mobility.

     
    more » « less
  4. High‐energy‐density storage devices play a major role in modern electronics from traditional lithium‐ion batteries to supercapacitors for a variety of applications from rechargeable devices to advanced military equipment. Despite the mass adoption of polymer capacitors, their application is limited by their low energy densities and low‐temperature tolerance. Polymer nanocomposites based on 2D nanomaterials have superior capacitive energy densities, higher thermal stabilities, and higher mechanical strength as compared to the pristine polymers and nanocomposites based on 0D or 1D nanomaterials, thus making them ideal for high‐energy‐density dielectric energy storage applications. Here, the recent advances in 2D‐nanomaterial‐based nanocomposites and their implications for energy storage applications are reviewed. Nanocomposites based on conducting 2D nanofillers such as graphene, reduced graphene oxide, MXenes, semiconducting 2D nanofillers including transition metal dichalcogenides such as MoS2, dielectric 2D nanofillers including hBN, Mica, Al2O3, TiO2, Ca2Nb3O10and MMT, and their effects on permittivity, dielectric strength, capacitive energy density, efficiency, thermal stability, and the mechanical strength, are discussed. Also, the theory and machine‐learning‐guided design of polymer 2D nanomaterial composites is learnt and the challenges and opportunities for developing ultrahigh‐capacitive‐energy‐density devices based on these nanofiller polymer composites are presented.

     
    more » « less
  5. Abstract Compelling evidence suggests distinct correlated electron behavior may exist only in clean 2D materials such as 1T-TaS 2 . Unfortunately, experiment and theory suggest that extrinsic disorder in free standing 2D layers disrupts correlation-driven quantum behavior. Here we demonstrate a route to realizing fragile 2D quantum states through endotaxial polytype engineering of van der Waals materials. The true isolation of 2D charge density waves (CDWs) between metallic layers stabilizes commensurate long-range order and lifts the coupling between neighboring CDW layers to restore mirror symmetries via interlayer CDW twinning. The twinned-commensurate charge density wave (tC-CDW) reported herein has a single metal–insulator phase transition at ~350 K as measured structurally and electronically. Fast in-situ transmission electron microscopy and scanned nanobeam diffraction map the formation of tC-CDWs. This work introduces endotaxial polytype engineering of van der Waals materials to access latent 2D ground states distinct from conventional 2D fabrication. 
    more » « less