Phase change materials, which show different electrical characteristics across the phase transitions, have attracted considerable research attention for their potential electronic device applications. Materials with metal‐to‐insulator or charge density wave (CDW) transitions such as VO2and 1
This content will become publicly available on August 13, 2025
We study the coupled charge density wave (CDW) and insulator-to-metal transitions in the 2D quantum material 1T-TaS2. By applying in situ cryogenic 4D scanning transmission electron microscopy with in situ electrical resistance measurements, we directly visualize the CDW transition and establish that the transition is mediated by basal dislocations (stacking solitons). We find that dislocations can both nucleate and pin the transition and locally alter the transition temperature
- Award ID(s):
- 1719875
- PAR ID:
- 10548782
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 33
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract T ‐TaS2have demonstrated voltage oscillations due to their robust bi‐state resistive switching behavior with some basic neuronal characteristics. BaTiS3is a small bandgap ternary chalcogenide that has recently reported the emergence of CDW order below 245 K. Here, the discovery of DC voltage / current‐induced reversible threshold switching in BaTiS3devices between a CDW phase and a room temperature semiconducting phase is reported. The resistive switching behavior is consistent with a Joule heating scheme and sustained voltage oscillations with a frequency of up to 1 kHz are demonstrated by leveraging the CDW phase transition and the associated negative differential resistance. Strategies of reducing channel sizes and improving thermal management may further improve the device's performance. The findings establish BaTiS3as a promising CDW material for future electronic device applications, especially for energy‐efficient neuromorphic computing. -
Abstract A distinct class of 2D layered quantum materials with the chemical formula of
R Te3(R = lanthanide) has gained significant attention owing to the occurrence of collective quantum states, superconductivity, charge density waves (CDW), spin density waves, and other advanced quantum properties. To study the Fermi surface nesting driven CDW formation, the layeredR Te3family stages an excellent low dimensional genre system. In addition to the primary energy gap feature observed at higher energy, optical spectroscopy study on someR Te3evidence a second CDW energy gap structure indicating the occurrence of multiple CDW ordering even with light and intermediateR Te3compounds. Here, a comprehensive review of the fundamentals ofR Te3layered tritelluride materials is presented with a special focus on the recent advances made in electronic structure, CDW transition, superconductivity, magnetic properties of these unique quantum materials. A detailed description of successful synthesis routes including the flux method, self‐flux method, and CVT along with potential applications is summarized. -
Abstract TiSe2is an exciting material because it can be tuned between superconducting and charge density wave (CDW) transitions. In the monolayer limit, TiSe2exhibits a sizable energy gap in the CDW phase that makes it a promising quantum material. It is shown that interfacing a single layer of TiSe2with dissimilar van der Waals materials enables control of its properties. Using angle‐resolved photoemission spectroscopy, the energy gap opening is analyzed as a function of temperature for TiSe2monolayers supported on different van der Waals substrates. A substantial increase in the CDW transition temperature of ≈45 K is observed on MoS2compared to graphite (highly oriented pyrolytic graphite) substrates. This control of the CDW in monolayer TiSe2is suggested to arise from varying charge screening of the unconventional CDW of TiSe2by the substrate. In addition, the suppression of CDW order and a complete closing of the energy gap by electron doping of monolayer TiSe2is demonstrated. Regulating the many‐body physics phenomena in monolayer TiSe2lays the foundation of modifying TiSe2in, for example, artificial van der Waals heterostructures and thus creates a new approach for utilizing the quantum states of TiSe2in device applications.
-
Abstract Methods to probe and understand the dynamic response of materials following impulsive excitation are important for many fields, from materials and energy sciences to chemical and neuroscience. To design more efficient nano, energy, and quantum devices, new methods are needed to uncover the dominant excitations and reaction pathways. In this work, we implement a newly-developed superlet transform—a super-resolution time-frequency analytical method—to analyze and extract phonon dynamics in a laser-excited two-dimensional (2D) quantum material. This quasi-2D system, 1
T -TaSe2, supports both equilibrium and metastable light-induced charge density wave (CDW) phases mediated by strongly coupled phonons. We compare the effectiveness of the superlet transform to standard time-frequency techniques. We find that the superlet transform is superior in both time and frequency resolution, and use it to observe and validate novel physics. In particular, we show fluence-dependent changes in the coupled dynamics of three phonon modes that are similar in frequency, including the CDW amplitude mode, that clearly demonstrate a change in the dominant charge-phonon couplings. More interestingly, the frequencies of the three phonon modes, including the strongly-coupled CDW amplitude mode, remain time- and fluence-independent, which is unusual compared to previously investigated materials. Our study opens a new avenue for capturing the coherent evolution and couplings of strongly-coupled materials and quantum systems. -
Abstract High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1
T -TaS2due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in TaS2devices. Here, we demonstrate the fabrication of nanothick verti-lateralH -TaS2/1T -TaS2heterostructures in which the number of endotaxial metallicH -TaS2monolayers dictates the number of resistance transitions in 1T -TaS2lamellae near room temperature. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps, and we show how strain engineering can be used to nucleate these polytype conversions. This work positions the principle of endotaxial heterostructures as a promising conceptual framework for reliable, non-volatile, and multi-level switching of structure, chirality, and resistance.