skip to main content


Title: Summertime Transport Pathways From Different Northern Hemisphere Regions Into the Arctic
Abstract

Trace gases and aerosols play an important role in Arctic chemistry and climate. As most Arctic tracers and aerosols are transported from midlatitude source regions, long‐range transport into the Arctic is one of the key factors to understand the current and future states of Arctic climate. While previous studies have investigated the airmass fraction and transit time distribution in the Arctic, the actual transport pathways and their underlying dynamics and efficiencies are yet to be understood. In this study, we implement a large ensemble of idealized tagged pulse passive tracers in the Whole Atmosphere Community Climate Model version 5 to identify and analyze summertime transport pathways from different Northern Hemisphere surface regions into the Arctic. Three different transport pathways are identified as those associated with fast, intermediate and slow time scales. Midlatitude tracers can be transported into the Arctic in the troposphere via the fast transport pathway (∼8 days), which moves tracers northward from the source region mainly through transient eddies. For the intermediate transport pathway, which happens on 1–3 weeks’ time scales, midlatitude tracers are first zonally transported by the jet stream, and then advected northward into the Arctic over Alaska and northern North Atlantic. Tropical and subtropical tracers are transported into the Arctic lower stratosphere via the slow transport pathway (1–3 months), as the tracers are lifted upward into the tropical and subtropical lower stratosphere, and then transported into the Arctic following the isentropic surfaces.

 
more » « less
Award ID(s):
1825858
NSF-PAR ID:
10446150
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
4
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study identifies the fast (i.e.,days–weeks) transport pathways that connect the Northern Hemisphere surface to the upper troposphere and lower stratosphere (UTLS) during northern summer by integrating a large (90 member) ensemble of Boundary Impulse Response tracers in the Whole Atmosphere Community Climate Model version 5. We show that there is a fast transport pathway that occurs over the southern slope of the Tibetan Plateau, northern India, the Arabian Sea, and Saudi Arabia; furthermore, we show that during July this pathway connects the Northern Hemisphere surface to the UTLS on a modal time scale of 5–10 days. A less efficient transport pathway is also identified over the western Pacific. A detailed budget analysis reveals that, while convective processes are responsible for transport to 200–300 hPa, the resolved dynamics, specifically the vertical eddy flux, dominate at 100–150 hPa. Transport variations are analyzed on weekly, monthly, and interannual time scales and are largely related to differences in the resolved dynamics in the UTLS.

     
    more » « less
  2. Abstract

    The joint influence of the stratospheric quasi‐biennial oscillation (QBO) and the El Niño Southern Oscillation (ENSO) on the polar vortex, subtropical westerly jets (STJs), and wave patterns during boreal winter is investigated in 40 years (1979–2018) of monthly mean ERA‐Interim reanalyses. The method of Wallace et al. (1993),https://doi.org/10.1175/15200469(1993)050<1751:ROTESQ>2.0.CO;2is used to conduct a QBO phase angle sweep. QBO westerly (W) and easterly (E) composites are then segregated by the phase of ENSO. Two pathways are described by which the QBO mean meridional circulation (MMC) influences the northern winter hemisphere. The “stratospheric pathway” modulates stratospheric planetary wave absorption via the Holton‐Tan mechanism. The “tropospheric pathway” modulates the tropical and subtropical upper troposphere and lower stratosphere. QBO MMC anomalies exhibit a checkerboard pattern in temperature and arched structures in zonal wind which extend into midlatitudes, and are stronger on the winter side. During QBO W, the polar vortex and STJs are enhanced. QBO signals in the polar vortex are amplified during La Niña. During El Niño and QBO W, the strongest STJs occur, and a warm pole/wave two pattern is found. During El Niño and QBO E, a trough is found over Eurasia and a ridge over the North Atlantic, in a wave one pattern. El Niño diminishes QBO anomalies in the tropical stratosphere and reduces the poleward extent and amplitude of the QBO MMC, thereby influencing the stratospheric pathway. Effects on the boreal winter hemisphere are attributed to the combined influence of the QBO and ENSO via both pathways.

     
    more » « less
  3. Abstract

    We use the idealized tracer experiments and investigate the summertime transport from the surface region of northern India and Tibetan Plateau to the lower stratosphere. It is found that the transport, compared to other surrounding regions, has an overall younger modal age in the northern lower stratosphere away from the tropopause. Analysis of the tracer budget reveals that the tracer is transported to the tropical lower stratosphere rapidly in the first 5 days due to vertical eddy transport and afterward in a month or two advection associated with the Brewer‐Dobson circulation. Meanwhile the tracer is also transported to the northern extratropical lower stratosphere in the first 3 months due to horizontal eddy mixing. The results highlight the uniqueness of the northern India region in the summertime transport to the lower stratosphere and implications for the transport of short‐lived chemical species in the destruction of stratospheric ozone.

     
    more » « less
  4. Abstract

    The 1783–1784 CE Laki flood lava eruption began on 8 June 1783. Over the course of 8 months, the eruption released approximately 122 Tg of sulfur dioxide gas into the upper troposphere and lower stratosphere above Iceland. Previous studies that have examined the impact of the Laki eruption on sulfate aerosol and climate have either used an aerosol model coupled off‐line to a general circulation model (GCM) or used a GCM with incomplete aerosol microphysics. Here, we study the impact on stratospheric aerosol evolution and stratospheric and tropospheric circulation using a fully coupled GCM with complete aerosol microphysics, the Community Earth System Model version 1, with the Whole Atmosphere Chemistry Climate Model high‐top atmosphere component. Simulations indicate that the Laki aerosols had peak average effective radii of approximately 0.4 μm in Northern Hemisphere (NH) middle and high latitudes, with peak average effective radii of 0.25 μm in NH tropics and 0.2 μm in the Southern Hemisphere. We find that the Laki aerosols are transported globally and have significant impacts on the circulation in both hemispheres, strengthening the Southern Hemisphere polar vortex and shifting the tropospheric NH subtropical jet equatorward.

     
    more » « less
  5. Abstract

    Understanding how the transport of gases and aerosols responds to climate change is necessary for policy making and emission controls. There is considerable spread in model projections of tracer transport in climate change simulations, largely because of the substantial uncertainty in projected changes in the large‐scale atmospheric circulation. In particular, a relationship between the response of tropospheric transport into the high latitudes and a shift of the midlatitude jet has been previously established in an idealized modeling study. To test the robustness of this relationship, we analyze the response of a passive tracer of northern midlatitude surface origin to abrupt 2xCO2and 4xCO2in a comprehensive climate model (Goddard Institute for Space Studies E2.2‐G). We show that a poleward shift of the northern midlatitude jet and enhanced eddy mixing along isentropes on the poleward flank of the jet result in decreased tracer concentrations over the midlatitudes and increased concentrations over the Arctic. This mechanism is robust in abrupt 2xCO2and 4xCO2simulations, the nonlinearity to CO2forcing, and two versions of the model with different atmospheric chemistry. Preliminary analysis of realistic chemical tracers suggests that the same mechanism can be used to provide insights into the climate change response of anthropogenic pollutants.

     
    more » « less